1
0

mapred-default.xml 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031
  1. <?xml version="1.0"?>
  2. <!--
  3. Licensed to the Apache Software Foundation (ASF) under one or more
  4. contributor license agreements. See the NOTICE file distributed with
  5. this work for additional information regarding copyright ownership.
  6. The ASF licenses this file to You under the Apache License, Version 2.0
  7. (the "License"); you may not use this file except in compliance with
  8. the License. You may obtain a copy of the License at
  9. http://www.apache.org/licenses/LICENSE-2.0
  10. Unless required by applicable law or agreed to in writing, software
  11. distributed under the License is distributed on an "AS IS" BASIS,
  12. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. See the License for the specific language governing permissions and
  14. limitations under the License.
  15. -->
  16. <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
  17. <!-- Do not modify this file directly. Instead, copy entries that you -->
  18. <!-- wish to modify from this file into mapred-site.xml and change them -->
  19. <!-- there. If mapred-site.xml does not already exist, create it. -->
  20. <configuration>
  21. <property>
  22. <name>mapreduce.job.committer.setup.cleanup.needed</name>
  23. <value>true</value>
  24. <description> true, if job needs job-setup and job-cleanup.
  25. false, otherwise
  26. </description>
  27. </property>
  28. <!-- i/o properties -->
  29. <property>
  30. <name>mapreduce.task.io.sort.factor</name>
  31. <value>10</value>
  32. <description>The number of streams to merge at once while sorting
  33. files. This determines the number of open file handles.</description>
  34. </property>
  35. <property>
  36. <name>mapreduce.task.io.sort.mb</name>
  37. <value>100</value>
  38. <description>The total amount of buffer memory to use while sorting
  39. files, in megabytes. By default, gives each merge stream 1MB, which
  40. should minimize seeks.</description>
  41. </property>
  42. <property>
  43. <name>mapreduce.map.sort.spill.percent</name>
  44. <value>0.80</value>
  45. <description>The soft limit in the serialization buffer. Once reached, a
  46. thread will begin to spill the contents to disk in the background. Note that
  47. collection will not block if this threshold is exceeded while a spill is
  48. already in progress, so spills may be larger than this threshold when it is
  49. set to less than .5</description>
  50. </property>
  51. <property>
  52. <name>mapreduce.local.clientfactory.class.name</name>
  53. <value>org.apache.hadoop.mapred.LocalClientFactory</value>
  54. <description>This the client factory that is responsible for
  55. creating local job runner client</description>
  56. </property>
  57. <property>
  58. <name>mapreduce.job.maps</name>
  59. <value>2</value>
  60. <description>The default number of map tasks per job.
  61. Ignored when mapreduce.framework.name is "local".
  62. </description>
  63. </property>
  64. <property>
  65. <name>mapreduce.job.reduces</name>
  66. <value>1</value>
  67. <description>The default number of reduce tasks per job. Typically set to 99%
  68. of the cluster's reduce capacity, so that if a node fails the reduces can
  69. still be executed in a single wave.
  70. Ignored when mapreduce.framework.name is "local".
  71. </description>
  72. </property>
  73. <property>
  74. <name>mapreduce.job.split.metainfo.maxsize</name>
  75. <value>10000000</value>
  76. <description>The maximum permissible size of the split metainfo file.
  77. The MapReduce ApplicationMaster won't attempt to read submitted split metainfo
  78. files bigger than this configured value.
  79. No limits if set to -1.
  80. </description>
  81. </property>
  82. <property>
  83. <name>mapreduce.map.maxattempts</name>
  84. <value>4</value>
  85. <description>Expert: The maximum number of attempts per map task.
  86. In other words, framework will try to execute a map task these many number
  87. of times before giving up on it.
  88. </description>
  89. </property>
  90. <property>
  91. <name>mapreduce.reduce.maxattempts</name>
  92. <value>4</value>
  93. <description>Expert: The maximum number of attempts per reduce task.
  94. In other words, framework will try to execute a reduce task these many number
  95. of times before giving up on it.
  96. </description>
  97. </property>
  98. <property>
  99. <name>mapreduce.reduce.shuffle.retry-delay.max.ms</name>
  100. <value>60000</value>
  101. <description>The maximum number of ms the reducer will delay before retrying
  102. to download map data.
  103. </description>
  104. </property>
  105. <property>
  106. <name>mapreduce.reduce.shuffle.parallelcopies</name>
  107. <value>5</value>
  108. <description>The default number of parallel transfers run by reduce
  109. during the copy(shuffle) phase.
  110. </description>
  111. </property>
  112. <property>
  113. <name>mapreduce.reduce.shuffle.connect.timeout</name>
  114. <value>180000</value>
  115. <description>Expert: The maximum amount of time (in milli seconds) reduce
  116. task spends in trying to connect to a remote node for getting map output.
  117. </description>
  118. </property>
  119. <property>
  120. <name>mapreduce.reduce.shuffle.read.timeout</name>
  121. <value>180000</value>
  122. <description>Expert: The maximum amount of time (in milli seconds) reduce
  123. task waits for map output data to be available for reading after obtaining
  124. connection.
  125. </description>
  126. </property>
  127. <property>
  128. <name>mapreduce.task.timeout</name>
  129. <value>600000</value>
  130. <description>The number of milliseconds before a task will be
  131. terminated if it neither reads an input, writes an output, nor
  132. updates its status string. A value of 0 disables the timeout.
  133. </description>
  134. </property>
  135. <property>
  136. <name>mapred.child.java.opts</name>
  137. <value>-Xmx200m</value>
  138. <description>Java opts for the task tracker child processes.
  139. The following symbol, if present, will be interpolated: @taskid@ is replaced
  140. by current TaskID. Any other occurrences of '@' will go unchanged.
  141. For example, to enable verbose gc logging to a file named for the taskid in
  142. /tmp and to set the heap maximum to be a gigabyte, pass a 'value' of:
  143. -Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc
  144. Usage of -Djava.library.path can cause programs to no longer function if
  145. hadoop native libraries are used. These values should instead be set as part
  146. of LD_LIBRARY_PATH in the map / reduce JVM env using the mapreduce.map.env and
  147. mapreduce.reduce.env config settings.
  148. </description>
  149. </property>
  150. <property>
  151. <name>mapred.child.env</name>
  152. <value></value>
  153. <description>User added environment variables for the task tracker child
  154. processes. Example :
  155. 1) A=foo This will set the env variable A to foo
  156. 2) B=$B:c This is inherit nodemanager's B env variable.
  157. </description>
  158. </property>
  159. <property>
  160. <name>mapreduce.admin.user.env</name>
  161. <value>LD_LIBRARY_PATH=$HADOOP_COMMON_HOME/lib/native</value>
  162. <description>Expert: Additional execution environment entries for
  163. map and reduce task processes. This is not an additive property.
  164. You must preserve the original value if you want your map and
  165. reduce tasks to have access to native libraries (compression, etc).
  166. </description>
  167. </property>
  168. <property>
  169. <name>mapreduce.task.tmp.dir</name>
  170. <value>./tmp</value>
  171. <description> To set the value of tmp directory for map and reduce tasks.
  172. If the value is an absolute path, it is directly assigned. Otherwise, it is
  173. prepended with task's working directory. The java tasks are executed with
  174. option -Djava.io.tmpdir='the absolute path of the tmp dir'. Pipes and
  175. streaming are set with environment variable,
  176. TMPDIR='the absolute path of the tmp dir'
  177. </description>
  178. </property>
  179. <property>
  180. <name>mapreduce.map.log.level</name>
  181. <value>INFO</value>
  182. <description>The logging level for the map task. The allowed levels are:
  183. OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE and ALL.
  184. </description>
  185. </property>
  186. <property>
  187. <name>mapreduce.reduce.log.level</name>
  188. <value>INFO</value>
  189. <description>The logging level for the reduce task. The allowed levels are:
  190. OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE and ALL.
  191. </description>
  192. </property>
  193. <property>
  194. <name>mapreduce.map.cpu.vcores</name>
  195. <value>1</value>
  196. <description>
  197. The number of virtual cores required for each map task.
  198. </description>
  199. </property>
  200. <property>
  201. <name>mapreduce.reduce.cpu.vcores</name>
  202. <value>1</value>
  203. <description>
  204. The number of virtual cores required for each reduce task.
  205. </description>
  206. </property>
  207. <property>
  208. <name>mapreduce.reduce.merge.inmem.threshold</name>
  209. <value>1000</value>
  210. <description>The threshold, in terms of the number of files
  211. for the in-memory merge process. When we accumulate threshold number of files
  212. we initiate the in-memory merge and spill to disk. A value of 0 or less than
  213. 0 indicates we want to DON'T have any threshold and instead depend only on
  214. the ramfs's memory consumption to trigger the merge.
  215. </description>
  216. </property>
  217. <property>
  218. <name>mapreduce.reduce.shuffle.merge.percent</name>
  219. <value>0.66</value>
  220. <description>The usage threshold at which an in-memory merge will be
  221. initiated, expressed as a percentage of the total memory allocated to
  222. storing in-memory map outputs, as defined by
  223. mapreduce.reduce.shuffle.input.buffer.percent.
  224. </description>
  225. </property>
  226. <property>
  227. <name>mapreduce.reduce.shuffle.input.buffer.percent</name>
  228. <value>0.70</value>
  229. <description>The percentage of memory to be allocated from the maximum heap
  230. size to storing map outputs during the shuffle.
  231. </description>
  232. </property>
  233. <property>
  234. <name>mapreduce.reduce.input.buffer.percent</name>
  235. <value>0.0</value>
  236. <description>The percentage of memory- relative to the maximum heap size- to
  237. retain map outputs during the reduce. When the shuffle is concluded, any
  238. remaining map outputs in memory must consume less than this threshold before
  239. the reduce can begin.
  240. </description>
  241. </property>
  242. <property>
  243. <name>mapreduce.reduce.shuffle.memory.limit.percent</name>
  244. <value>0.25</value>
  245. <description>Expert: Maximum percentage of the in-memory limit that a
  246. single shuffle can consume</description>
  247. </property>
  248. <property>
  249. <name>mapreduce.shuffle.ssl.enabled</name>
  250. <value>false</value>
  251. <description>
  252. Whether to use SSL for for the Shuffle HTTP endpoints.
  253. </description>
  254. </property>
  255. <property>
  256. <name>mapreduce.shuffle.ssl.file.buffer.size</name>
  257. <value>65536</value>
  258. <description>Buffer size for reading spills from file when using SSL.
  259. </description>
  260. </property>
  261. <property>
  262. <name>mapreduce.reduce.markreset.buffer.percent</name>
  263. <value>0.0</value>
  264. <description>The percentage of memory -relative to the maximum heap size- to
  265. be used for caching values when using the mark-reset functionality.
  266. </description>
  267. </property>
  268. <property>
  269. <name>mapreduce.map.speculative</name>
  270. <value>true</value>
  271. <description>If true, then multiple instances of some map tasks
  272. may be executed in parallel.</description>
  273. </property>
  274. <property>
  275. <name>mapreduce.reduce.speculative</name>
  276. <value>true</value>
  277. <description>If true, then multiple instances of some reduce tasks
  278. may be executed in parallel.</description>
  279. </property>
  280. <property>
  281. <name>mapreduce.job.speculative.speculativecap</name>
  282. <value>0.1</value>
  283. <description>The max percent (0-1) of running tasks that
  284. can be speculatively re-executed at any time.</description>
  285. </property>
  286. <property>
  287. <name>mapreduce.job.speculative.slowtaskthreshold</name>
  288. <value>1.0</value>The number of standard deviations by which a task's
  289. ave progress-rates must be lower than the average of all running tasks'
  290. for the task to be considered too slow.
  291. <description>
  292. </description>
  293. </property>
  294. <property>
  295. <name>mapreduce.job.speculative.slownodethreshold</name>
  296. <value>1.0</value>
  297. <description>The number of standard deviations by which a Task
  298. Tracker's average map and reduce progress-rates (finishTime-dispatchTime)
  299. must be lower than the average of all successful map/reduce task's for
  300. the NodeManager to be considered too slow to give a speculative task to.
  301. </description>
  302. </property>
  303. <property>
  304. <name>mapreduce.job.ubertask.enable</name>
  305. <value>false</value>
  306. <description>Whether to enable the small-jobs "ubertask" optimization,
  307. which runs "sufficiently small" jobs sequentially within a single JVM.
  308. "Small" is defined by the following maxmaps, maxreduces, and maxbytes
  309. settings. Users may override this value.
  310. </description>
  311. </property>
  312. <property>
  313. <name>mapreduce.job.ubertask.maxmaps</name>
  314. <value>9</value>
  315. <description>Threshold for number of maps, beyond which job is considered
  316. too big for the ubertasking optimization. Users may override this value,
  317. but only downward.
  318. </description>
  319. </property>
  320. <property>
  321. <name>mapreduce.job.ubertask.maxreduces</name>
  322. <value>1</value>
  323. <description>Threshold for number of reduces, beyond which job is considered
  324. too big for the ubertasking optimization. CURRENTLY THE CODE CANNOT SUPPORT
  325. MORE THAN ONE REDUCE and will ignore larger values. (Zero is a valid max,
  326. however.) Users may override this value, but only downward.
  327. </description>
  328. </property>
  329. <property>
  330. <name>mapreduce.job.ubertask.maxbytes</name>
  331. <value></value>
  332. <description>Threshold for number of input bytes, beyond which job is
  333. considered too big for the ubertasking optimization. If no value is
  334. specified, dfs.block.size is used as a default. Be sure to specify a
  335. default value in mapred-site.xml if the underlying filesystem is not HDFS.
  336. Users may override this value, but only downward.
  337. </description>
  338. </property>
  339. <property>
  340. <name>mapreduce.input.fileinputformat.split.minsize</name>
  341. <value>0</value>
  342. <description>The minimum size chunk that map input should be split
  343. into. Note that some file formats may have minimum split sizes that
  344. take priority over this setting.</description>
  345. </property>
  346. <property>
  347. <name>mapreduce.client.submit.file.replication</name>
  348. <value>10</value>
  349. <description>The replication level for submitted job files. This
  350. should be around the square root of the number of nodes.
  351. </description>
  352. </property>
  353. <property>
  354. <name>mapreduce.task.files.preserve.failedtasks</name>
  355. <value>false</value>
  356. <description>Should the files for failed tasks be kept. This should only be
  357. used on jobs that are failing, because the storage is never
  358. reclaimed. It also prevents the map outputs from being erased
  359. from the reduce directory as they are consumed.</description>
  360. </property>
  361. <!--
  362. <property>
  363. <name>mapreduce.task.files.preserve.filepattern</name>
  364. <value>.*_m_123456_0</value>
  365. <description>Keep all files from tasks whose task names match the given
  366. regular expression. Defaults to none.</description>
  367. </property>
  368. -->
  369. <property>
  370. <name>mapreduce.output.fileoutputformat.compress</name>
  371. <value>false</value>
  372. <description>Should the job outputs be compressed?
  373. </description>
  374. </property>
  375. <property>
  376. <name>mapreduce.output.fileoutputformat.compress.type</name>
  377. <value>RECORD</value>
  378. <description>If the job outputs are to compressed as SequenceFiles, how should
  379. they be compressed? Should be one of NONE, RECORD or BLOCK.
  380. </description>
  381. </property>
  382. <property>
  383. <name>mapreduce.output.fileoutputformat.compress.codec</name>
  384. <value>org.apache.hadoop.io.compress.DefaultCodec</value>
  385. <description>If the job outputs are compressed, how should they be compressed?
  386. </description>
  387. </property>
  388. <property>
  389. <name>mapreduce.map.output.compress</name>
  390. <value>false</value>
  391. <description>Should the outputs of the maps be compressed before being
  392. sent across the network. Uses SequenceFile compression.
  393. </description>
  394. </property>
  395. <property>
  396. <name>mapreduce.map.output.compress.codec</name>
  397. <value>org.apache.hadoop.io.compress.DefaultCodec</value>
  398. <description>If the map outputs are compressed, how should they be
  399. compressed?
  400. </description>
  401. </property>
  402. <property>
  403. <name>map.sort.class</name>
  404. <value>org.apache.hadoop.util.QuickSort</value>
  405. <description>The default sort class for sorting keys.
  406. </description>
  407. </property>
  408. <property>
  409. <name>mapreduce.task.userlog.limit.kb</name>
  410. <value>0</value>
  411. <description>The maximum size of user-logs of each task in KB. 0 disables the cap.
  412. </description>
  413. </property>
  414. <property>
  415. <name>mapreduce.job.maxtaskfailures.per.tracker</name>
  416. <value>3</value>
  417. <description>The number of task-failures on a node manager of a given job
  418. after which new tasks of that job aren't assigned to it. It
  419. MUST be less than mapreduce.map.maxattempts and
  420. mapreduce.reduce.maxattempts otherwise the failed task will
  421. never be tried on a different node.
  422. </description>
  423. </property>
  424. <property>
  425. <name>mapreduce.client.output.filter</name>
  426. <value>FAILED</value>
  427. <description>The filter for controlling the output of the task's userlogs sent
  428. to the console of the JobClient.
  429. The permissible options are: NONE, KILLED, FAILED, SUCCEEDED and
  430. ALL.
  431. </description>
  432. </property>
  433. <property>
  434. <name>mapreduce.client.completion.pollinterval</name>
  435. <value>5000</value>
  436. <description>The interval (in milliseconds) between which the JobClient
  437. polls the MapReduce ApplicationMaster for updates about job status. You may want to
  438. set this to a lower value to make tests run faster on a single node system. Adjusting
  439. this value in production may lead to unwanted client-server traffic.
  440. </description>
  441. </property>
  442. <property>
  443. <name>mapreduce.client.progressmonitor.pollinterval</name>
  444. <value>1000</value>
  445. <description>The interval (in milliseconds) between which the JobClient
  446. reports status to the console and checks for job completion. You may want to set this
  447. to a lower value to make tests run faster on a single node system. Adjusting
  448. this value in production may lead to unwanted client-server traffic.
  449. </description>
  450. </property>
  451. <property>
  452. <name>mapreduce.task.profile</name>
  453. <value>false</value>
  454. <description>To set whether the system should collect profiler
  455. information for some of the tasks in this job? The information is stored
  456. in the user log directory. The value is "true" if task profiling
  457. is enabled.</description>
  458. </property>
  459. <property>
  460. <name>mapreduce.task.profile.maps</name>
  461. <value>0-2</value>
  462. <description> To set the ranges of map tasks to profile.
  463. mapreduce.task.profile has to be set to true for the value to be accounted.
  464. </description>
  465. </property>
  466. <property>
  467. <name>mapreduce.task.profile.reduces</name>
  468. <value>0-2</value>
  469. <description> To set the ranges of reduce tasks to profile.
  470. mapreduce.task.profile has to be set to true for the value to be accounted.
  471. </description>
  472. </property>
  473. <property>
  474. <name>mapreduce.task.skip.start.attempts</name>
  475. <value>2</value>
  476. <description> The number of Task attempts AFTER which skip mode
  477. will be kicked off. When skip mode is kicked off, the
  478. tasks reports the range of records which it will process
  479. next, to the MR ApplicationMaster. So that on failures, the MR AM
  480. knows which ones are possibly the bad records. On further executions,
  481. those are skipped.
  482. </description>
  483. </property>
  484. <property>
  485. <name>mapreduce.map.skip.proc.count.autoincr</name>
  486. <value>true</value>
  487. <description> The flag which if set to true,
  488. SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS is incremented
  489. by MapRunner after invoking the map function. This value must be set to
  490. false for applications which process the records asynchronously
  491. or buffer the input records. For example streaming.
  492. In such cases applications should increment this counter on their own.
  493. </description>
  494. </property>
  495. <property>
  496. <name>mapreduce.reduce.skip.proc.count.autoincr</name>
  497. <value>true</value>
  498. <description> The flag which if set to true,
  499. SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS is incremented
  500. by framework after invoking the reduce function. This value must be set to
  501. false for applications which process the records asynchronously
  502. or buffer the input records. For example streaming.
  503. In such cases applications should increment this counter on their own.
  504. </description>
  505. </property>
  506. <property>
  507. <name>mapreduce.job.skip.outdir</name>
  508. <value></value>
  509. <description> If no value is specified here, the skipped records are
  510. written to the output directory at _logs/skip.
  511. User can stop writing skipped records by giving the value "none".
  512. </description>
  513. </property>
  514. <property>
  515. <name>mapreduce.map.skip.maxrecords</name>
  516. <value>0</value>
  517. <description> The number of acceptable skip records surrounding the bad
  518. record PER bad record in mapper. The number includes the bad record as well.
  519. To turn the feature of detection/skipping of bad records off, set the
  520. value to 0.
  521. The framework tries to narrow down the skipped range by retrying
  522. until this threshold is met OR all attempts get exhausted for this task.
  523. Set the value to Long.MAX_VALUE to indicate that framework need not try to
  524. narrow down. Whatever records(depends on application) get skipped are
  525. acceptable.
  526. </description>
  527. </property>
  528. <property>
  529. <name>mapreduce.reduce.skip.maxgroups</name>
  530. <value>0</value>
  531. <description> The number of acceptable skip groups surrounding the bad
  532. group PER bad group in reducer. The number includes the bad group as well.
  533. To turn the feature of detection/skipping of bad groups off, set the
  534. value to 0.
  535. The framework tries to narrow down the skipped range by retrying
  536. until this threshold is met OR all attempts get exhausted for this task.
  537. Set the value to Long.MAX_VALUE to indicate that framework need not try to
  538. narrow down. Whatever groups(depends on application) get skipped are
  539. acceptable.
  540. </description>
  541. </property>
  542. <property>
  543. <name>mapreduce.ifile.readahead</name>
  544. <value>true</value>
  545. <description>Configuration key to enable/disable IFile readahead.
  546. </description>
  547. </property>
  548. <property>
  549. <name>mapreduce.ifile.readahead.bytes</name>
  550. <value>4194304</value>
  551. <description>Configuration key to set the IFile readahead length in bytes.
  552. </description>
  553. </property>
  554. <property>
  555. <name>mapreduce.job.queuename</name>
  556. <value>default</value>
  557. <description> Queue to which a job is submitted. This must match one of the
  558. queues defined in mapred-queues.xml for the system. Also, the ACL setup
  559. for the queue must allow the current user to submit a job to the queue.
  560. Before specifying a queue, ensure that the system is configured with
  561. the queue, and access is allowed for submitting jobs to the queue.
  562. </description>
  563. </property>
  564. <property>
  565. <name>mapreduce.cluster.local.dir</name>
  566. <value>${hadoop.tmp.dir}/mapred/local</value>
  567. <description>
  568. The local directory where MapReduce stores intermediate
  569. data files. May be a comma-separated list of
  570. directories on different devices in order to spread disk i/o.
  571. Directories that do not exist are ignored.
  572. </description>
  573. </property>
  574. <property>
  575. <name>mapreduce.cluster.acls.enabled</name>
  576. <value>false</value>
  577. <description> Specifies whether ACLs should be checked
  578. for authorization of users for doing various queue and job level operations.
  579. ACLs are disabled by default. If enabled, access control checks are made by
  580. MapReduce ApplicationMaster when requests are made by users for queue
  581. operations like submit job to a queue and kill a job in the queue and job
  582. operations like viewing the job-details (See mapreduce.job.acl-view-job)
  583. or for modifying the job (See mapreduce.job.acl-modify-job) using
  584. Map/Reduce APIs, RPCs or via the console and web user interfaces.
  585. For enabling this flag, set to true in mapred-site.xml file of all
  586. MapReduce clients (MR job submitting nodes).
  587. </description>
  588. </property>
  589. <property>
  590. <name>mapreduce.job.acl-modify-job</name>
  591. <value> </value>
  592. <description> Job specific access-control list for 'modifying' the job. It
  593. is only used if authorization is enabled in Map/Reduce by setting the
  594. configuration property mapreduce.cluster.acls.enabled to true.
  595. This specifies the list of users and/or groups who can do modification
  596. operations on the job. For specifying a list of users and groups the
  597. format to use is "user1,user2 group1,group". If set to '*', it allows all
  598. users/groups to modify this job. If set to ' '(i.e. space), it allows
  599. none. This configuration is used to guard all the modifications with respect
  600. to this job and takes care of all the following operations:
  601. o killing this job
  602. o killing a task of this job, failing a task of this job
  603. o setting the priority of this job
  604. Each of these operations are also protected by the per-queue level ACL
  605. "acl-administer-jobs" configured via mapred-queues.xml. So a caller should
  606. have the authorization to satisfy either the queue-level ACL or the
  607. job-level ACL.
  608. Irrespective of this ACL configuration, (a) job-owner, (b) the user who
  609. started the cluster, (c) members of an admin configured supergroup
  610. configured via mapreduce.cluster.permissions.supergroup and (d) queue
  611. administrators of the queue to which this job was submitted to configured
  612. via acl-administer-jobs for the specific queue in mapred-queues.xml can
  613. do all the modification operations on a job.
  614. By default, nobody else besides job-owner, the user who started the cluster,
  615. members of supergroup and queue administrators can perform modification
  616. operations on a job.
  617. </description>
  618. </property>
  619. <property>
  620. <name>mapreduce.job.acl-view-job</name>
  621. <value> </value>
  622. <description> Job specific access-control list for 'viewing' the job. It is
  623. only used if authorization is enabled in Map/Reduce by setting the
  624. configuration property mapreduce.cluster.acls.enabled to true.
  625. This specifies the list of users and/or groups who can view private details
  626. about the job. For specifying a list of users and groups the
  627. format to use is "user1,user2 group1,group". If set to '*', it allows all
  628. users/groups to modify this job. If set to ' '(i.e. space), it allows
  629. none. This configuration is used to guard some of the job-views and at
  630. present only protects APIs that can return possibly sensitive information
  631. of the job-owner like
  632. o job-level counters
  633. o task-level counters
  634. o tasks' diagnostic information
  635. o task-logs displayed on the HistoryServer's web-UI and
  636. o job.xml showed by the HistoryServer's web-UI
  637. Every other piece of information of jobs is still accessible by any other
  638. user, for e.g., JobStatus, JobProfile, list of jobs in the queue, etc.
  639. Irrespective of this ACL configuration, (a) job-owner, (b) the user who
  640. started the cluster, (c) members of an admin configured supergroup
  641. configured via mapreduce.cluster.permissions.supergroup and (d) queue
  642. administrators of the queue to which this job was submitted to configured
  643. via acl-administer-jobs for the specific queue in mapred-queues.xml can
  644. do all the view operations on a job.
  645. By default, nobody else besides job-owner, the user who started the
  646. cluster, memebers of supergroup and queue administrators can perform
  647. view operations on a job.
  648. </description>
  649. </property>
  650. <property>
  651. <name>mapreduce.task.merge.progress.records</name>
  652. <value>10000</value>
  653. <description> The number of records to process during merge before
  654. sending a progress notification to the MR ApplicationMaster.
  655. </description>
  656. </property>
  657. <property>
  658. <name>mapreduce.job.reduce.slowstart.completedmaps</name>
  659. <value>0.05</value>
  660. <description>Fraction of the number of maps in the job which should be
  661. complete before reduces are scheduled for the job.
  662. </description>
  663. </property>
  664. <property>
  665. <name>mapreduce.job.complete.cancel.delegation.tokens</name>
  666. <value>true</value>
  667. <description> if false - do not unregister/cancel delegation tokens from
  668. renewal, because same tokens may be used by spawned jobs
  669. </description>
  670. </property>
  671. <property>
  672. <name>mapreduce.shuffle.port</name>
  673. <value>8080</value>
  674. <description>Default port that the ShuffleHandler will run on. ShuffleHandler
  675. is a service run at the NodeManager to facilitate transfers of intermediate
  676. Map outputs to requesting Reducers.
  677. </description>
  678. </property>
  679. <property>
  680. <name>mapreduce.job.reduce.shuffle.consumer.plugin.class</name>
  681. <value>org.apache.hadoop.mapreduce.task.reduce.Shuffle</value>
  682. <description>
  683. Name of the class whose instance will be used
  684. to send shuffle requests by reducetasks of this job.
  685. The class must be an instance of org.apache.hadoop.mapred.ShuffleConsumerPlugin.
  686. </description>
  687. </property>
  688. <!-- MR YARN Application properties -->
  689. <property>
  690. <name>mapreduce.job.counters.limit</name>
  691. <value>120</value>
  692. <description>Limit on the number of user counters allowed per job.
  693. </description>
  694. </property>
  695. <property>
  696. <name>mapreduce.framework.name</name>
  697. <value>local</value>
  698. <description>The runtime framework for executing MapReduce jobs.
  699. Can be one of local, classic or yarn.
  700. </description>
  701. </property>
  702. <property>
  703. <name>yarn.app.mapreduce.am.staging-dir</name>
  704. <value>/tmp/hadoop-yarn/staging</value>
  705. <description>The staging dir used while submitting jobs.
  706. </description>
  707. </property>
  708. <!-- Job Notification Configuration -->
  709. <property>
  710. <name>mapreduce.job.end-notification.url</name>
  711. <!--<value>http://localhost:8080/jobstatus.php?jobId=$jobId&amp;jobStatus=$jobStatus</value>-->
  712. <description>Indicates url which will be called on completion of job to inform
  713. end status of job.
  714. User can give at most 2 variables with URI : $jobId and $jobStatus.
  715. If they are present in URI, then they will be replaced by their
  716. respective values.
  717. </description>
  718. </property>
  719. <property>
  720. <name>mapreduce.job.end-notification.retry.attempts</name>
  721. <value>0</value>
  722. <description>The number of times the submitter of the job wants to retry job
  723. end notification if it fails. This is capped by
  724. mapreduce.job.end-notification.max.attempts</description>
  725. </property>
  726. <property>
  727. <name>mapreduce.job.end-notification.retry.interval</name>
  728. <value>1000</value>
  729. <description>The number of milliseconds the submitter of the job wants to
  730. wait before job end notification is retried if it fails. This is capped by
  731. mapreduce.job.end-notification.max.retry.interval</description>
  732. </property>
  733. <property>
  734. <name>mapreduce.job.end-notification.max.attempts</name>
  735. <value>5</value>
  736. <final>true</final>
  737. <description>The maximum number of times a URL will be read for providing job
  738. end notification. Cluster administrators can set this to limit how long
  739. after end of a job, the Application Master waits before exiting. Must be
  740. marked as final to prevent users from overriding this.
  741. </description>
  742. </property>
  743. <property>
  744. <name>mapreduce.job.end-notification.max.retry.interval</name>
  745. <value>5000</value>
  746. <final>true</final>
  747. <description>The maximum amount of time (in milliseconds) to wait before
  748. retrying job end notification. Cluster administrators can set this to
  749. limit how long the Application Master waits before exiting. Must be marked
  750. as final to prevent users from overriding this.</description>
  751. </property>
  752. <property>
  753. <name>yarn.app.mapreduce.am.env</name>
  754. <value></value>
  755. <description>User added environment variables for the MR App Master
  756. processes. Example :
  757. 1) A=foo This will set the env variable A to foo
  758. 2) B=$B:c This is inherit tasktracker's B env variable.
  759. </description>
  760. </property>
  761. <property>
  762. <name>yarn.app.mapreduce.am.admin.user.env</name>
  763. <value></value>
  764. <description> Environment variables for the MR App Master
  765. processes for admin purposes. These values are set first and can be
  766. overridden by the user env (yarn.app.mapreduce.am.env) Example :
  767. 1) A=foo This will set the env variable A to foo
  768. 2) B=$B:c This is inherit app master's B env variable.
  769. </description>
  770. </property>
  771. <property>
  772. <name>yarn.app.mapreduce.am.command-opts</name>
  773. <value>-Xmx1024m</value>
  774. <description>Java opts for the MR App Master processes.
  775. The following symbol, if present, will be interpolated: @taskid@ is replaced
  776. by current TaskID. Any other occurrences of '@' will go unchanged.
  777. For example, to enable verbose gc logging to a file named for the taskid in
  778. /tmp and to set the heap maximum to be a gigabyte, pass a 'value' of:
  779. -Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc
  780. Usage of -Djava.library.path can cause programs to no longer function if
  781. hadoop native libraries are used. These values should instead be set as part
  782. of LD_LIBRARY_PATH in the map / reduce JVM env using the mapreduce.map.env and
  783. mapreduce.reduce.env config settings.
  784. </description>
  785. </property>
  786. <property>
  787. <name>yarn.app.mapreduce.am.admin-command-opts</name>
  788. <value></value>
  789. <description>Java opts for the MR App Master processes for admin purposes.
  790. It will appears before the opts set by yarn.app.mapreduce.am.command-opts and
  791. thus its options can be overridden user.
  792. Usage of -Djava.library.path can cause programs to no longer function if
  793. hadoop native libraries are used. These values should instead be set as part
  794. of LD_LIBRARY_PATH in the map / reduce JVM env using the mapreduce.map.env and
  795. mapreduce.reduce.env config settings.
  796. </description>
  797. </property>
  798. <property>
  799. <name>yarn.app.mapreduce.am.job.task.listener.thread-count</name>
  800. <value>30</value>
  801. <description>The number of threads used to handle RPC calls in the
  802. MR AppMaster from remote tasks</description>
  803. </property>
  804. <property>
  805. <name>yarn.app.mapreduce.am.job.client.port-range</name>
  806. <value></value>
  807. <description>Range of ports that the MapReduce AM can use when binding.
  808. Leave blank if you want all possible ports.
  809. For example 50000-50050,50100-50200</description>
  810. </property>
  811. <property>
  812. <name>yarn.app.mapreduce.am.job.committer.cancel-timeout</name>
  813. <value>60000</value>
  814. <description>The amount of time in milliseconds to wait for the output
  815. committer to cancel an operation if the job is killed</description>
  816. </property>
  817. <property>
  818. <name>yarn.app.mapreduce.am.job.committer.commit-window</name>
  819. <value>10000</value>
  820. <description>Defines a time window in milliseconds for output commit
  821. operations. If contact with the RM has occurred within this window then
  822. commits are allowed, otherwise the AM will not allow output commits until
  823. contact with the RM has been re-established.</description>
  824. </property>
  825. <property>
  826. <name>yarn.app.mapreduce.am.scheduler.heartbeat.interval-ms</name>
  827. <value>1000</value>
  828. <description>The interval in ms at which the MR AppMaster should send
  829. heartbeats to the ResourceManager</description>
  830. </property>
  831. <property>
  832. <name>yarn.app.mapreduce.client-am.ipc.max-retries</name>
  833. <value>1</value>
  834. <description>The number of client retries to the AM - before reconnecting
  835. to the RM to fetch Application Status.</description>
  836. </property>
  837. <property>
  838. <name>yarn.app.mapreduce.client.max-retries</name>
  839. <value>3</value>
  840. <description>The number of client retries to the RM/HS/AM before
  841. throwing exception. This is a layer above the ipc.</description>
  842. </property>
  843. <property>
  844. <name>yarn.app.mapreduce.am.resource.mb</name>
  845. <value>1536</value>
  846. <description>The amount of memory the MR AppMaster needs.</description>
  847. </property>
  848. <property>
  849. <name>yarn.app.mapreduce.am.resource.cpu-vcores</name>
  850. <value>1</value>
  851. <description>
  852. The number of virtual CPU cores the MR AppMaster needs.
  853. </description>
  854. </property>
  855. <property>
  856. <description>CLASSPATH for MR applications. A comma-separated list
  857. of CLASSPATH entries</description>
  858. <name>mapreduce.application.classpath</name>
  859. <value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*,$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value>
  860. </property>
  861. <property>
  862. <name>mapreduce.job.classloader</name>
  863. <value>false</value>
  864. <description>Whether to use a separate (isolated) classloader for
  865. user classes in the task JVM.</description>
  866. </property>
  867. <property>
  868. <name>mapreduce.job.classloader.system.classes</name>
  869. <value>java.,javax.,org.apache.commons.logging.,org.apache.log4j.,org.apache.hadoop.</value>
  870. <description>A comma-separated list of classes that should be loaded from the
  871. system classpath, not the user-supplied JARs, when mapreduce.job.classloader
  872. is enabled. Names ending in '.' (period) are treated as package names,
  873. and names starting with a '-' are treated as negative matches.
  874. </description>
  875. </property>
  876. <!-- jobhistory properties -->
  877. <property>
  878. <name>mapreduce.jobhistory.address</name>
  879. <value>0.0.0.0:10020</value>
  880. <description>MapReduce JobHistory Server IPC host:port</description>
  881. </property>
  882. <property>
  883. <name>mapreduce.jobhistory.webapp.address</name>
  884. <value>0.0.0.0:19888</value>
  885. <description>MapReduce JobHistory Server Web UI host:port</description>
  886. </property>
  887. <property>
  888. <name>mapreduce.jobhistory.keytab</name>
  889. <description>
  890. Location of the kerberos keytab file for the MapReduce
  891. JobHistory Server.
  892. </description>
  893. <value>/etc/security/keytab/jhs.service.keytab</value>
  894. </property>
  895. <property>
  896. <name>mapreduce.jobhistory.principal</name>
  897. <description>
  898. Kerberos principal name for the MapReduce JobHistory Server.
  899. </description>
  900. <value>jhs/_HOST@REALM.TLD</value>
  901. </property>
  902. <property>
  903. <name>mapreduce.job.map.output.collector.class</name>
  904. <value>org.apache.hadoop.mapred.MapTask$MapOutputBuffer</value>
  905. <description>
  906. It defines the MapOutputCollector implementation to use.
  907. </description>
  908. </property>
  909. </configuration>