Hadoop Map-Reduce Tutorial

Table of contents

070 PRSP 2
P (= (=0 U 1 (=SSR 2
S OVEIVIBIW. ..ttt b et s ae e b e et e e ae e eb e e a b e e he e nbe et e eRe e beeneenheenbeenbeeneenreas 2
4 INPULS @NA OULPULS.......eeeveeieitiesie et este et seesteesteeee e e ssesseesseessesseesseesesnsesseensesnnesees 3
5 Example: WOrdCoUNt VL.0........c.coiieieiieniecie et eee e te et sne e e nne e nns 3
T IS0 1 £ 0/ =X o [3
B2 USAOR. ...ttt et s n e nre e 6
5.3 WalK-tNIOUGN.......eeeeee et naeas 7
6 Map-Reduce - USer INtEITACES.........cuoiiieiie ettt 8
LTI = (Y] o o P 9
(372N o o T @Xe a1 110U = 1 o o SR 12
6.3 Task EXeCUtioN & ENVIFONMENL.........c.ccoveiereereeieseese e seese e e sae e e e nse e sneees 13
6.4 Job SUPMISSION aNA MONITOMTNG......cviiiiieiirieeieeeeee e 14
(ST o o I8 1 0] o1 | SR 15
LSRN 0] o @ 1 11| SRS 16
6.7 Other USEfUl FEAIUIES..........eiiiiieieeieiesie ettt 17
7 Example: WOrdCoUNE V2.0.......c..coiieieeieeeeie s esie e e e sae e ae e sneenesneenneas 19
A RS o 1 (0T o [SRS 20
7.2 SAMPIE RUNS.......eiee ettt r b e e 26

T3 SAlIONE POINTS. ... 27

Hadoop Map-Reduce Tutorial

1. Purpose

This document comprehensively describes al user-facing facets of the Hadoop Map-Reduce
framework and serves as atutorial.

2. Pre-requisites

Ensure that Hadoop isinstalled, configured and is running. More details:

« Hadoop Quickstart for first-time users.
» Hadoop Cluster Setup for large, distributed clusters.

3. Overview

Hadoop Map-Reduce is a software framework for easily writing applications which process
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of
nodes) of commodity hardware in areliable, fault-tolerant manner.

A Map-Reduce job usually splits the input data-set into independent chunks which are
processed by the map tasksin a completely parallel manner. The framework sorts the outputs
of the maps, which are then input to the reduce tasks. Typically both the input and the output
of the job are stored in afile-system. The framework takes care of scheduling tasks,
monitoring them and re-executes the failed tasks.

Typically the compute nodes and the storage nodes are the same, that is, the Map-Reduce
framework and the Distributed FileSystem are running on the same set of nodes. This
configuration allows the framework to effectively schedule tasks on the nodes where datais
already present, resulting in very high aggregate bandwidth across the cluster.

The Map-Reduce framework consists of asingle master JobTr acker and one slave
TaskTr acker per cluster-node. The master is responsible for scheduling the jobs
component tasks on the slaves, monitoring them and re-executing the failed tasks. The slaves
execute the tasks as directed by the master.

Minimally, applications specify the input/output locations and supply map and reduce
functions viaimplementations of appropriate interfaces and/or abstract-classes. These, and
other job parameters, comprise the job configuration. The Hadoop job client then submits the
job (jar/executable etc.) and configuration to the JobTr acker which then assumes the
responsibility of distributing the software/configuration to the slaves, scheduling tasks and
monitoring them, providing status and diagnostic information to the job-client.

Although the Hadoop framework is implemented in JavaTM, Map-Reduce applications need

Page 2

quickstart.html
cluster_setup.html
hdfs_design.html

Hadoop Map-Reduce Tutorial

not be written in Java

« Hadoop Streaming is a utility which allows users to create and run jobs with any
executables (e.g. shell utilities) as the mapper and/or the reducer.

» Hadoop Pipesisa SWIG- compatible C++ API to implement Map-Reduce applications
(non INITM based).

4. Inputs and Outputs

The Map-Reduce framework operates exclusively on <key, val ue> pairs, that is, the
framework views the input to the job as a set of <key, val ue> pairsand produces a set of
<key, val ue> pairsasthe output of the job, conceivably of different types.

Thekey and val ue classes have to be serializable by the framework and hence need to
implement the Writable interface. Additionally, the key classes have to implement the
WritableComparable interface to facilitate sorting by the framework.

Input and Output types of a Map-Reduce job:

(input) <k1, v1>->map-><k2, v2>->combine-><k2, v2>->reduce-><k3,
v 3> (output)

5. Example: WordCount v1.0

Before we jump into the details, lets walk through an example Map-Reduce application to get
aflavour for how they work.

Wbr dCount isasimple application that counts the number of occurences of each word in a
given input set.

5.1. Source Code

package org. nyorg;

i mport java.io. Exception;

inport java.util.*;

@A~ WD RE

i mport org.apache. hadoop. fs. Pat h;

Page 3

api/org/apache/hadoop/streaming/package-summary.html
api/org/apache/hadoop/mapred/pipes/package-summary.html
http://www.swig.org/
api/org/apache/hadoop/io/Writable.html
api/org/apache/hadoop/io/WritableComparable.html

10.
11.
12.
13.
14.

15.

16.
17.
18.

19.
20.

21.

22.

23.
24,
25.
26.
27.

Hadoop Map-Reduce Tutorial

i mport org. apache. hadoop. conf. *;
i mport org.apache. hadoop.io. *;
i mport org.apache. hadoop. mapred. *;

i mport org.apache. hadoop. util.*;

public class WrdCount {

public static class Mapd ass
ext ends MapReduceBase i npl enents
Mapper <LongW it abl e, Text, Text,
IntWitable> {

private final static IntWitable
one = new IntWitable(l);

private Text word = new Text();

public void map(LongWitabl e key,
Text val ue, Qut put Col | ect or <Text,
IntWitabl e> output, Reporter
reporter) throws | CException {

String line = value.toString();

StringTokeni zer tokenizer = new
StringTokeni zer (line);

whi | e
(tokeni zer. hasMoreTokens()) {
wor d. set (t okeni zer. next Token());

out put.coll ect(word, one);

}
}
}

Page 4

Hadoop Map-Reduce Tutorial

28. public static class Reduce extends
MapReduceBase i npl enent s
Reducer <Text, IntWitable, Text,
IntWitable> {

29. public void reduce(Text key,
Iterator<lntWitabl e> val ues,
Qut put Col | ect or<Text, IntWitabl e>
out put, Reporter reporter) throws

| OException {
30. int sum= 0;
31. whil e (val ues. hasNext()) {
32. sum += val ues. next (). get();
33. }
34. out put . col | ect (key, new
IntWitable(sum);
35. }
36. }
37.
38. public static void main(String[]
args) throws Exception {
39. JobConf conf = new
JobConf (Wr dCount . cl ass) ;
40. conf . set JobNane("wordcount");
41.
42,
conf . set Qut put Keyd ass(Text. cl ass);
43.
conf . set Qut put Val ued ass(Int Wit able.class);
44,
45,
conf . set Mapper d ass(MapC ass. cl ass) ;
46.

conf . set Combi ner C ass(Reduce. cl ass);

Page 5

Hadoop Map-Reduce Tutorial

i conf . set Reducer Cl ass(Reduce. cl ass);
48.
49.
conf. set | nput For mat (Text | nput For mat . cl ass);
50.
conf . set Qut put For mat (Text Qut put For nat . cl ass) ;
51.
52. conf. set | nput Pat h(new
Pat h(args[1]));
53. conf . set Qut put Pat h(new
Pat h(args[2]));
54.
55. Jobd i ent.runJob(conf);
57. }
58. }
59.
5.2. Usage

Assuming HADOOP_HQVE is the root of the installation and HADOOP_VERSI ONisthe
Hadoop version installed, compile Wor dCount . j ava and create ajar:

$ javac -classpath

${ HADOOP_HQOVE} / hadoop- ${ HADOOP_VERSI ON} - cor e. j ar
Wor dCount . j ava

$ jar -cvf /usr/joe/wordcount.jar WrdCount.class

Assuming that:

e /usr/joe/wordcount/input -inputdirectory in HDFS
e /usr/joel/wordcount/out put -output directory in HDFS

Sample text-files asinput:

$ bin/ hadoop dfs -Is /usr/joe/wordcount/input/
[usr/joe/wordcount/input/file0l

Page 6

Hadoop Map-Reduce Tutorial

[usr/joe/wordcount/input/file02

$ bi n/ hadoop dfs -cat /usr/joe/wordcount/input/file0l
Hello Wrld Bye Wrld

$ bi n/ hadoop dfs -cat /usr/joe/wordcount/input/file02
Hel | o Hadoop Goodbye Hadoop

Run the application:

$ bi n/ hadoop jar /usr/joe/wordcount.jar org. morg. WrdCount
[usr/joe/wordcount/input /usr/joe/wordcount/out put

Output:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1

Goodbye 1

Hadoop 2

Hello 2

Wrld 2

5.3. Walk-through

The Wbr dCount application is quite straight-forward.

The Mapper implementation (lines 14-26), viathe map method (lines 18-25), processes one
line at atime, as provided by the specified Text | nput For mat (line 49). It then splitsthe
line into tokens separated by whitespaces, viathe St r i ngTokeni zer , and emitsa
key-value pair of < <wor d>, 1>,

For the given sample input the first map emits:

< Hello, 1>
< Wrld, 1>
< Bye, 1>

< Wrld, 1>

The second map emits:
< Hello, 1>

< Hadoop, 1>

< Goodbye, 1>

< Hadoop, 1>

WE'll learn more about the number of maps spawned for a given job, and how to control
them in afine-grained manner, abit later in the tutorial.

Page 7

Hadoop Map-Reduce Tutorial

Wor dCount also specifiesaconbi ner (line 46). Hence, the output of each map is passed
through the local combiner (which is same asthe Reducer as per the job configuration) for
local aggregation, after being sorted on the keys.

The output of the first map:
< Bye, 1>

< Hello, 1>

< Wrld, 2>

The output of the second map:
< Goodbye, 1>

< Hadoop, 2>

< Hello, 1>

The Reducer implementation (lines 28-36), viather educe method (lines 29-35) just
sums up the values, which are the occurence counts for each key (i.e. words in this example).

Thus the output of thejob is:
< Bye, 1>

Goodbye, 1>
Hadoop, 2>

Hel | 0, 2>

World, 2>

Ther un method specifies various facets of the job, such as the input/output paths (passed
viathe command line), key/value types, input/output formats etc., in the JobConf . It then
callstheJobd i ent . r unJob (line 55) to submit the and monitor its progress.

<
<
<
<

Wel'll learn more about JobConf , JobCl i ent , Tool and other interfaces and classes a bit
later in the tutorial.

6. Map-Reduce - User Interfaces

This section provides a reasonable amount of detail on every user-facing aspect of the
Map-Reduce framwork. This should help users implement, configure and tune their jobsin a
fine-grained manner. However, please note that the javadoc for each class/interface remains
the most comprehensive documentation available; thisis only meant to be atutorial.

Let usfirst takethe Mapper and Reducer interfaces. Applications typically implement
them to provide the map and r educe methods.

We will then discuss other core interfacesincluding JobConf , Jobd i ent ,
Partitioner,Qut put Col | ect or,Reporter, | nput For mat, Qut put For mat

Page 8

Hadoop Map-Reduce Tutorial

and others.

Finally, we will wrap up by discussing some useful features of the framework such as the
Di stri but edCache, | sol ati onRunner etc.

6.1. Payload

Applications typically implement the Mapper and Reducer interfaces to provide the map
and r educe methods. These form the core of the job.

6.1.1. Mapper
Mapper maps input key/value pairs to a set of intermediate key/value pairs.

Maps are the individual tasks that transform input records into intermediate records. The
transformed intermediate records do not need to be of the same type as the input records. A
given input pair may map to zero or many output pairs.

The Hadoop Map-Reduce framework spawns one map task for each | nput Spl i t
generated by the | nput For mat for the job.

Overall, Mapper implementations are passed the JobConf for thejob viathe
JobConfigurable.configure(JobConf) method and override it to initialize themselves. The
framework then calls map(WritableComparable, Writable, OutputCollector, Reporter) for
each key/value pair inthe | nput Spl i t for that task. Applications can then override the
Closeable.close() method to perform any required cleanup.

Output pairs do not need to be of the same types as input pairs. A given input pair may map
to zero or many output pairs. Output pairs are collected with callsto
OutputCollector.collect(WritableComparable Writable).

Applications can use the Repor t er to report progress, set application-level status messages
and update Count er s, or just indicate that they are alive.

All intermediate values associated with a given output key are subsequently grouped by the
framework, and passed to the Reducer (s) to determine the final output. Users can control
the grouping by specifying a Conpar at or via

JobConf.setOutputK eyComparator Class(Class).

The Mapper outputs are sorted and then partitioned per Reducer . The total number of
partitions is the same as the number of reduce tasks for the job. Users can control which keys
(and hence records) go to which Reducer by implementing acustomPartiti oner.

Users can optionally specify aconbi ner , via JobConf.setCombinerClass(Class), to

Page 9

api/org/apache/hadoop/mapred/Mapper.html
api/org/apache/hadoop/mapred/JobConfigurable.html#configure(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/Mapper.html#map(K1, V1, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/io/Closeable.html#close()
api/org/apache/hadoop/mapred/OutputCollector.html#collect(K, V)
api/org/apache/hadoop/mapred/JobConf.html#setOutputKeyComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapred/JobConf.html#setCombinerClass(java.lang.Class)

Hadoop Map-Reduce Tutorial

perform local aggregation of the intermediate outputs, which helps to cut down the amount of
data transferred from the Mapper to the Reducer .

The intermediate, sorted outputs are always stored in files of SequenceFile format.
Applications can control if, and how, the intermediate outputs are to be compressed and the
CompressionCodec to be used viathe JobConf .

6.1.1.1. How Many M aps?

The number of mapsis usually driven by the total size of the inputs, that is, the total number
of blocks of the input files.

Theright level of parallelism for maps seems to be around 10-100 maps per-node, although it
has been set up to 300 maps for very cpu-light map tasks. Task setup takes awhile, soitis
best if the maps take at least a minute to execute.

Thus, if you expect 10TB of input data and have a blocksize of 128MB, you'll end up with
82,000 maps, unless setNumMapTasks(int) (which only provides a hint to the framework) is
used to set it even higher.

6.1.2. Reducer
Reducer reduces a set of intermediate values which share akey to a smaller set of values.
The number of reduces for the job is set by the user via JobConf.setNumReduceTasks(int).

Overall, Reducer implementations are passed the JobConf for the job viathe
JobConfigurable.configure(JobConf) method and can override it to initialize themselves. The
framework then calls reduce(WritableComparable, Iterator, OutputCollector, Reporter)
method for each <key, (i st of val ues) > pair inthe grouped inputs. Applications
can then override the Closeable.close() method to perform any required cleanup.

Reducer has 3 primary phases. shuffle, sort and reduce.

6.1.2.1. Shuffle

Input to the Reducer isthe sorted output of the mappers. In this phase the framework
fetches the relevant partition of the output of all the mappers, viaHTTP.

6.1.2.2. Sort

The framework groups Reducer inputs by keys (since different mappers may have output
the same key) in this stage.

Page 10

api/org/apache/hadoop/io/SequenceFile.html
api/org/apache/hadoop/io/compress/CompressionCodec.html
api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)
api/org/apache/hadoop/mapred/Reducer.html
api/org/apache/hadoop/mapred/JobConf.html#setNumReduceTasks(int)
api/org/apache/hadoop/mapred/JobConfigurable.html#configure(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/Reducer.html#reduce(K2, java.util.Iterator, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/io/Closeable.html#close()

Hadoop Map-Reduce Tutorial

The shuffle and sort phases occur simultaneously; while map-outputs are being fetched they
are merged.

Secondary Sort

If equivalence rules for grouping the intermediate keys are required to be different from those
for grouping keys before reduction, then one may specify a Conpar at or via
JobConf.setOutputV al ueGroupingComparator(Class). Since

JobConf.setOutputK eyComparatorClass(Class) can be used to control how intermediate keys
are grouped, these can be used in conjunction to simulate secondary sort on values.

6.1.2.3. Reduce

In this phase the reduce(WritableComparable, Iterator, OutputCollector, Reporter) method is
caled for each<key, (list of val ues) > pairinthegrouped inputs.

The output of the reduce task is typically written to the FileSystem via
OutputCollector.collect(WritableComparable, Writable).

Applications can use the Repor t er to report progress, set application-level status messages
and update Count er s, or just indicate that they are alive.

The output of the Reducer isnot sorted.

6.1.2.4. How Many Reduces?

The right number of reduces seemsto be 0. 95 or 1. 75 multiplied by (<no. of nodes> *
mapr ed. t asktracker. reduce. t asks. maxi num.

With 0. 95 all of the reduces can launch immediately and start transfering map outputs as
the maps finish. With 1. 75 the faster nodes will finish their first round of reduces and
launch a second wave of reduces doing a much better job of load balancing.

Increasing the number of reduces increases the framework overhead, but increases |oad
balancing and lowers the cost of failures.

The scaling factors above are dlightly less than whole numbers to reserve afew reduce slots
in the framework for speculative-tasks and failed tasks.

6.1.2.5. Reducer NONE

Itislegal to set the number of reduce-tasksto zero if no reduction is desired.

In this case the outputs of the map-tasks go directly to the Fi | eSyst em into the output

Page 11

api/org/apache/hadoop/mapred/JobConf.html#setOutputValueGroupingComparator(java.lang.Class)
api/org/apache/hadoop/mapred/JobConf.html#setOutputKeyComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapred/Reducer.html#reduce(K2, java.util.Iterator, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/fs/FileSystem.html
api/org/apache/hadoop/mapred/OutputCollector.html#collect(K, V)

Hadoop Map-Reduce Tutorial

path set by setOutputPath(Path). The framework does not sort the map-outputs before writing
themout totheFi | eSyst em

6.1.3. Partitioner
Partitioner partitions the key space.

Partitioner controls the partitioning of the keys of the intermediate map-outputs. The key (or
asubset of the key) is used to derive the partition, typically by a hash function. The total
number of partitionsis the same as the number of reduce tasks for the job. Hence this
controls which of the mreduce tasks the intermediate key (and hence the record) is sent to for
reduction.

HashPartitioner isthe default Parti ti oner.

6.1.4. Reporter

Reporter is afacility for Map-Reduce applications to report progress, set application-level
status messages and update Count er s.

Mapper and Reducer implementations can use the Repor t er to report progress or just
indicate that they are alive. In scenarios where the application takes a significant amount of
time to process individual key/value pairs, thisis crucial since the framework might assume
that the task has timed-out and kill that task. Another way to avoid thisisto set the
configuration parameter mapr ed. t ask. t i meout to ahigh-enough value (or even set it to
zero for no time-outs).

Applications can also update Count er s using the Report er.

6.1.5. OutputCollector

OutputCollector is a generalization of the facility provided by the Map-Reduce framework to
collect data output by the Mapper or the Reducer (either the intermediate outputs or the
output of the job).

Hadoop Map-Reduce comes bundled with alibrary of generally useful mappers, reducers,
and partitioners.

6.2. Job Configuration

JobConf represents a Map-Reduce job configuration.

JobConf isthe primary interface for a user to describe a map-reduce job to the Hadoop

Page 12

api/org/apache/hadoop/mapred/JobConf.html#setOutputPath(org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/Partitioner.html
api/org/apache/hadoop/mapred/lib/HashPartitioner.html
api/org/apache/hadoop/mapred/Reporter.html
api/org/apache/hadoop/mapred/OutputCollector.html
api/org/apache/hadoop/mapred/lib/package-summary.html
api/org/apache/hadoop/mapred/JobConf.html

Hadoop Map-Reduce Tutorial

framework for execution. The framework triesto faithfully execute the job as described by
JobConf , however:

« f Some configuration parameters may have been marked asfinal by administrators and
hence cannot be altered.

« While some job parameters are straight-forward to set (e.g. setNumReduceTasks(int)),
other parameters interact subtly with the rest of the framework and/or job configuration
and are more complex to set (e.g. setNumMapTasks(int)).

JobConf istypicaly used to specify the Mapper , combiner (if any), Parti ti oner,
Reducer, | nput For mat and Qut put For mat implementations. JobConf also
indicates the set of input files (setlnputPath(Path)/addl nputPath(Path)) and where the output
files should be written (setOutputPath(Path)).

Optionally, JobConf isused to specify other advanced facets of the job such asthe
Conpar at or to beused, filestobeputintheDi stri but edCache, whether
intermediate and/or job outputs are to be compressed (and how), debugging via
user-provided scripts (setM apDebugScri pt(String)/setReduceDebugScript(String)) , whether
job tasks can be executed in a speculative manner

(setM apSpecul ativeExecution(bool ean))/(setReduceSpecul ati veExecution(bool ean)) ,
maximum number of attempts per task

(setM axM apA ttempts(int)/setM axReduceA ttempts(int)) , percentage of tasks failure which
can be tolerated by the job

(setM axM apT askFail uresPercent(int)/setM axReduceT askFail uresPercent(int)) etc.

Of course, users can use set(String, String)/get(String, String) to set/get arbitrary parameters
needed by applications. However, usethe Di st ri but edCache for large amounts of
(read-only) data.

6.3. Task Execution & Environment

The TaskTr acker executesthe Mapper/ Reducer task asachild processin a separate
jvm.

The child-task inherits the environment of the parent TaskTr acker . The user can specify
additional options to the child-jvm viathe mapr ed. chi | d. j ava. opt s configuration
parameter in the JobConf such as non-standard paths for the run-time linker to search
shared librariesvia- Dj ava. | i brary. pat h=<> etc. If the

mapr ed. chi | d. j ava. opt s contains the symbol @taskid@ it is interpolated with value
of t aski d of the map/reduce task.

Hereis an example with multiple arguments and substitutions, showing jvm GC logging, and
start of a passwordless VM JMX agent so that it can connect with jconsole and the likes to

Page 13

api/org/apache/hadoop/conf/Configuration.html#FinalParams
api/org/apache/hadoop/mapred/JobConf.html#setNumReduceTasks(int)
api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)
api/org/apache/hadoop/mapred/JobConf.html#setInputPath(org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/JobConf.html#addInputPath(org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/JobConf.html#setOutputPath(org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/JobConf.html#setMapDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setReduceDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setMapSpeculativeExecution(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setReduceSpeculativeExecution(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setMaxMapAttempts(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceAttempts(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxMapTaskFailuresPercent(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceTaskFailuresPercent(int)
api/org/apache/hadoop/conf/Configuration.html#set(java.lang.String, java.lang.String)
api/org/apache/hadoop/conf/Configuration.html#get(java.lang.String, java.lang.String)

Hadoop Map-Reduce Tutorial

watch child memory, threads and get thread dumps. It aso sets the maximum heap-size of
the child jvm to 512MB and adds an additional pathtothej ava. | i brary. pat h of the
child-jvm.

<property>
<nane>mapr ed. chi | d. j ava. opt s</ nane>
<val ue>
- Xnmx512M - D ava. | i brary. pat h=/ hone/ nyconpany/lib
-verbose: gc - Xl oggc:/tnmp/ @aski d@ gc
- Dcom sun. managenent . j nxr enot e. aut hent i cat e=f al se
- Dcom sun. managenent . j nxr enot e. ssl =f al se
</val ue>
</ property>

The DistributedCache can also be used as a rudimentary software distribution mechanism for
use in the map and/or reduce tasks. It can be used to distribute both jars and native libraries.
The DistributedCache.addA rchiveT oClassPath(Path, Configuration) or
DistributedCache.addFileT oClassPath(Path, Configuration) api can be used to cache filedjars
and also add them to the classpath of child-jvm. Similarly the facility provided by the

Di stri but edCache where-in it symlinks the cached files into the working directory of
the task can be used to distribute native libraries and load them. The underlying detail is that
child-jvm always has its current working directory added tothej ava. | i brary. pat h

and hence the cached libraries can be loaded via System.loadL ibrary or System.load.

6.4. Job Submission and Monitoring
JobClient isthe primary interface by which user-job interacts with the JobTr acker .

Jobd i ent providesfacilities to submit jobs, track their progress, access component-tasks
reports/logs, get the Map-Reduce cluster's status information and so on.

The job submission process involves:

1. Checking the input and output specifications of the job.

2. Computing thel nput Spl i t valuesfor thejob.

3. Setting up the requisite accounting information for the Di st ri but edCache of thejab,
if necessary.

4. Copying thejob'sjar and configuration to the map-reduce system directory on the
Fi | eSystem

5. Submitting the job to the JobTr acker and optionally monitoring it's status.

Normally the user creates the application, describes various facets of the job viaJobConf ,
and then usesthe JobCl i ent to submit the job and monitor its progress.

Page 14

api/org/apache/hadoop/filecache/DistributedCache.html#addArchiveToClassPath(org.apache.hadoop.fs.Path,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addFileToClassPath(org.apache.hadoop.fs.Path,%20org.apache.hadoop.conf.Configuration)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#loadLibrary(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#load(java.lang.String)
api/org/apache/hadoop/mapred/JobClient.html

Hadoop Map-Reduce Tutorial

6.4.1. Job Control

Users may need to chain map-reduce jobs to accomplish complex tasks which cannot be done
viaasingle map-reduce job. Thisisfairly easy since the output of the job typically goesto
distributed file-system, and the output, in turn, can be used as the input for the next job.

However, this also means that the onus on ensuring jobs are compl ete (success/failure) lies
squarely on the clients. In such cases, the various job-control options are:

« runJob(JobConf) : Submits the job and returns only after the job has compl eted.

« submitJob(JobConf) : Only submits the job, then poll the returned handle to the
RunningJob to query status and make scheduling decisions.

» JobConf.setJobEndNotificationURI(String) : Sets up a notification upon job-completion,
thus avoiding polling.

6.5. Job Input
InputFormat describes the input-specification for a Map-Reduce job.

The Map-Reduce framework relieson the | nput For mat of the job to:

1. Validate the input-specification of the job.

2. Split-up the input file(s) into logical | nput Spl i t instances, each of which isthen
assigned to an individual Mapper .

3. Providethe Recor dReader implementation used to glean input records from the
logical | nput Spl i t for processing by the Mapper .

The default behavior of file-based | nput For mat implementations, typically sub-classes of
FilelnputFormat, isto split the input into logical | nput Spl i t instances based on the total
Size, in bytes, of the input files. However, the Fi | eSyst emblocksize of the input filesis
treated as an upper bound for input splits. A lower bound on the split size can be set via
mapred. m n.split.size.

Clearly, logical splits based on input-size is insufficient for many applications since record
boundaries must be respected. In such cases, the application should implement a

Recor dReader , who is responsible for respecting record-boundaries and presents a
record-oriented view of thelogical | nput Spl i t totheindividual task.

TextlnputFormat isthe default | nput For mat .

If Text | nput For mat isthel nput For mat for agiven job, the framework detects
input-files with the .gz and .I1zo extensions and automatically decompresses them using the
appropriate Conpr essi onCodec. However, it must be noted that compressed files with
the above extensions cannot be split and each compressed file is processed in its entirety by a

Page 15

api/org/apache/hadoop/mapred/JobClient.html#runJob(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/JobClient.html#submitJob(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/RunningJob.html
api/org/apache/hadoop/mapred/JobConf.html#setJobEndNotificationURI(java.lang.String)
api/org/apache/hadoop/mapred/InputFormat.html
api/org/apache/hadoop/mapred/FileInputFormat.html
api/org/apache/hadoop/mapred/TextInputFormat.html

Hadoop Map-Reduce Tutorial

single mapper.

6.5.1. InputSplit
[nputSplit represents the data to be processed by an individual Mapper .

Typicaly | nput Spl i t presents abyte-oriented view of theinput, and it isthe
responsibility of Recor dReader to process and present a record-oriented view.

FileSplit isthe default | nput Spl i t.Itsetsmap. i nput. fi |l e tothe path of the input
filefor thelogical split.

6.5.2. RecordReader
RecordReader reads <key, val ue> parsfromanl| nput Split.

Typicaly the Recor dReader converts the byte-oriented view of the input, provided by the
| nput Spl i t, and presents arecord-oriented to the Mapper implementations for
processing. Recor dReader thus assumes the responsibility of processing record
boundaries and presents the tasks with keys and values.

6.6. Job Output
OutputFormat describes the output-specification for a Map-Reduce job.

The Map-Reduce framework relies on the Qut put For mat of thejaob to:

1. Validate the output-specification of the job; for example, check that the output directory
doesn't already exist.

2. Providethe Recor dWi t er implementation used to write the output files of the job.
Output filesarestoredinaFi | eSyst em

Text Qut put For mat isthe default Qut put For nat .

6.6.1. Task Side-Effect Files

In some applications, component tasks need to create and/or write to side-files, which differ
from the actual job-output files.

In such cases there could be issues with two instances of the same Mapper or Reducer
running simultaneously (for example, speculative tasks) trying to open and/or write to the
samefile (path) on the Fi | eSyst em Hence the application-writer will have to pick unique
names per task-attempt (using the taskid, say

task_ 200709221812 _0001_m 000000_0), not just per task.

Page 16

api/org/apache/hadoop/mapred/InputSplit.html
api/org/apache/hadoop/mapred/FileSplit.html
api/org/apache/hadoop/mapred/RecordReader.html
api/org/apache/hadoop/mapred/OutputFormat.html

Hadoop Map-Reduce Tutorial

To avoid these issues the Map-Reduce framework maintains a specia

${mapred. out put. dir}/_${taski d} sub-directory for each task-attempt on the
Fi | eSyst emwhere the output of the task-attempt is stored. On successful completion of
the task-attempt, the filesin the ${ mapr ed. out put . di r}/ _${t aski d} (only) are
promoted to ${ mapr ed. out put . di r } . Of course, the framework discards the
sub-directory of unsuccessful task-attempts. This processis completely transparent to the
application.

The application-writer can take advantage of this feature by creating any side-files required
in${ mapr ed. out put . di r} during execution of atask via JobConf.getOutputPath(), and
the framework will promote them similarly for succesful task-attempts, thus eliminating the
need to pick unique paths per task-attempt.

6.6.2. RecordWriter
RecordWriter writes the output <key, val ue> pairsto an output file.

RecordWriter implementations write the job outputsto the Fi | eSyst em
6.7. Other Useful Features

6.7.1. Counters

Count er s represent global counters, defined either by the Map-Reduce framework or
applications. Each Count er can be of any Enumtype. Counters of a particular Enumare
bunched into groups of type Count er s. G oup.

Applications can define arbitrary Count er s (of type Enunj and update them via
Reporter.incrCounter(Enum, long) in the map and/or r educe methods. These counters are
then globally aggregated by the framework.

6.7.2. DistributedCache
DistributedCache distributes application-specific, large, read-only files efficiently.

Di stri but edCache isafacility provided by the Map-Reduce framework to cache files
(text, archives, jars and so on) needed by applications.

Applications specify the files to be cached via urls (hdfs:// or http://) inthe JobConf . The
Di st ri but edCache assumesthat the files specified via hdfs:// urls are already present on
theFi | eSystem

The framework will copy the necessary filesto the slave node before any tasks for the job are

Page 17

api/org/apache/hadoop/mapred/JobConf.html#getOutputPath()
api/org/apache/hadoop/mapred/RecordWriter.html
api/org/apache/hadoop/mapred/Reporter.html#incrCounter(java.lang.Enum, long)
api/org/apache/hadoop/filecache/DistributedCache.html

Hadoop Map-Reduce Tutorial

executed on that node. Its efficiency stems from the fact that the files are only copied once
per job and the ability to cache archives which are un-archived on the slaves.

Di st ri but edCache tracks the modification timestamps of the cached files. Clearly the
cache files should not be modified by the application or externally while the job is executing.

Di stri but edCache can be used to distribute simple, read-only data/text files and more
complex types such as archives and jars. Archives (zip files) are un-archived at the slave
nodes. Optionally users can also direct the Di st ri but edCache to symlink the cached
file(s) intothecurrent wor ki ng di rect ory of thetask viathe
DistributedCache.createSymlink(Path, Configuration) api. Files have execution permissions
Set.

6.7.3. Tool
The Toal interface supports the handling of generic Hadoop command-line options.

Tool isthe standard for any Map-Reduce tool or application. The application should
delegate the handling of standard command-line options to GenericOptionsParser via
ToolRunner.run(Tooal, String[]) and only handle its custom arguments.

The generic Hadoop command-line options are:
-conf <configuration file>

-D <property=val ue>

-fs <l ocal | nanenode: port >

-jt <l ocal|jobtracker:port>

6.7.4. | solationRunner

| solationRunner is a utility to help debug Map-Reduce programs.

Tousethel sol ati onRunner , first set keep. fai |l ed. tasks.filestotrue (aso
seekeep. tasks. fil es. pattern).

Next, go to the node on which the failed task ran and go to the Task Tr acker 'slocal
directory and runthel sol ati onRunner :

$ cd <local path>/taskTracker/ ${taski d}/work

$ bi n/ hadoop org. apache. hadoop. mapr ed. | sol ati onRunner
../job.xm

| sol ati onRunner will run the failed task in asingle jvm, which can be in the debugger,
over precisely the same input.

Page 18

api/org/apache/hadoop/filecache/DistributedCache.html#createSymlink(org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/util/Tool.html
api/org/apache/hadoop/util/GenericOptionsParser.html
api/org/apache/hadoop/util/ToolRunner.html#run(org.apache.hadoop.util.Tool, java.lang.String[])
api/org/apache/hadoop/mapred/IsolationRunner.html

Hadoop Map-Reduce Tutorial

6.7.5. JobControl
JobControl is a utility which encapsulates a set of Map-Reduce jobs and their dependencies.

6.7.6. Data Compression

Hadoop Map-Reduce provides facilities for the application-writer to specify compression for
both intermediate map-outputs and the job-outputs i.e. output of the reduces. It also comes
bundled with CompressionCodec implementations for the zlib and 1zo compression
algorithms. The gzip file format is also supported.

Hadoop aso provides native implementations of the above compression codecs for reasons
of both performance (zlib) and non-availability of Javalibraries (I1zo). More details on their
usage and availability are available here.

6.7.6.1. Intermediate Outputs

Applications can control compression of intermediate map-outputs via the
JobConf.setCompressM apOutput(boolean) api and the Conpr essi onCodec to be used via
the JobConf.setM apOutputCompressorClass(Class) api. Since the intermediate map-outputs
are always stored in the SequenceFile format, the SequenceFile.CompressionType (i.e.
RECORD / BLOCK - defaults to RECORD) can be specified viathe

JobConf.setM apOutputCompressionType(SequenceFile.CompressionType) api.

6.7.6.2. Job Outputs

Applications can control compression of job-outputs viathe
OutputFormatBase.setCompressOutput(JobConf, boolean) api and the
Conpr essi onCodec to be used can be specified viathe
OutputFormatBase.setOutputCompressorClass(JobConf, Class) api.

If the job outputs are to be stored in the SequenceFileOutputFormat, the required
SequenceFi | e. Conpr essi onType (i.e. RECORD/ BLOCK - defaults to RECORD)can
be specified via the SequenceFileOutputFormat.setOutputCompressionType(JobConf,
SequenceFile.CompressionType) api.

7. Example: WordCount v2.0

Here isamore complete Wor dCount which uses many of the features provided by the
M ap-Reduce framework we discussed so far:

Page 19

api/org/apache/hadoop/mapred/jobcontrol/package-summary.html
api/org/apache/hadoop/io/compress/CompressionCodec.html
http://www.zlib.net/
http://www.oberhumer.com/opensource/lzo/
http://www.gzip.org/
native_libraries.html
api/org/apache/hadoop/mapred/JobConf.html#setCompressMapOutput(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setMapOutputCompressorClass(java.lang.Class)
api/org/apache/hadoop/io/SequenceFile.html
api/org/apache/hadoop/io/SequenceFile.CompressionType.html
api/org/apache/hadoop/io/SequenceFile.CompressionType.html#RECORD
api/org/apache/hadoop/io/SequenceFile.CompressionType.html#BLOCK
api/org/apache/hadoop/mapred/JobConf.html#setMapOutputCompressionType(org.apache.hadoop.io.SequenceFile.CompressionType)
api/org/apache/hadoop/mapred/OutputFormatBase.html#setCompressOutput(org.apache.hadoop.mapred.JobConf,%20boolean)
api/org/apache/hadoop/mapred/OutputFormatBase.html#setOutputCompressorClass(org.apache.hadoop.mapred.JobConf,%20java.lang.Class)
api/org/apache/hadoop/mapred/SequenceFileOutputFormat.html
api/org/apache/hadoop/mapred/SequenceFileOutputFormat.html#setOutputCompressionType(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.io.SequenceFile.CompressionType)
api/org/apache/hadoop/mapred/SequenceFileOutputFormat.html#setOutputCompressionType(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.io.SequenceFile.CompressionType)

Hadoop Map-Reduce Tutorial

7.1. Source Code

1. package org. myorg;

2.

3. i mport java.io.*;

4, i mport java.util.*;

5.

6. i mport org.apache. hadoop. fs. Pat h;

7. i mport
or g. apache. hadoop. fil ecache. Di stri but edCache;

8. i mport org. apache. hadoop. conf. *;

9. i mport org.apache. hadoop.io. *;

10. i mport org. apache. hadoop. mapred. *;

11. i mport org. apache. hadoop. util.*;

12.

13. public class WrdCount extends
Configured inplenments Tool {

14,

15. public static class Mapd ass
ext ends MapReduceBase i npl enents
Mapper <LongW it abl e, Text, Text,
IntWitable> {

16.

17. static enum Counters {
| NPUT_WORDS }

18.

19. private final static IntWitable
one = new IntWitable(l);

20. private Text word = new Text();

Page 20

Hadoop Map-Reduce Tutorial

21.

22. private bool ean caseSensitive =
true;

23. private Set<String>
patternsToSki p = new
HashSet <Stri ng>();

24,

25. private | ong nunRecords = O;

26. private String inputFile;

27.

28. public void configure(JobConf
job) {

29. caseSensitive =
j ob. get Bool ean("wor dcount . case. sensitive",
true);

30. inputFile =
job.get("map.input.file");

31.

32. Path[] patternsFiles = new
Pat h[0] ;

33. try {

34. patternsFiles =
Di st ri but edCache. get Local CacheFi | es(j ob);

35. } catch (1 CException ioe) {

36. Systemerr. println("Caught
exception while getting cached
files: " +
StringUtils.stringifyException(ioe));

37. }

38. for (Path patternsFile :
patternsFiles) {

39. par seSki pFi |l e(patternsFile);

Page 21

40.
41.
42,
43.

44,
45,

46.
47.

48.
49,
50.
51.

52.
53.
54.
55.

56.

57.
58.

Hadoop Map-Reduce Tutorial

private void parseSki pFil e(Path
patternsFile) {

try {

Buf f eredReader fis = new
Buf f er edReader (new
Fil eReader (patternsFile.toString()));

String pattern = null

while ((pattern =
fis.readLine()) !'= null) {

patternsToSki p. add(pattern);

}
} catch (1 CException ioe) {

Systemerr. println("Caught
exception while parsing the cached
file'" + patternsFile + "' : " +
StringUtils.stringifyException(ioe));

}
}

public void map(LongWitabl e key,
Text val ue, Qut put Col | ect or <Text,
IntWitabl e> output, Reporter
reporter) throws | CException {

String line = (caseSensitive) ?
val ue.toString()
val ue.toString().toLowerCase();

for (String pattern :
patternsToSki p) {

Page 22

Hadoop Map-Reduce Tutorial

59. line = line.replaceAll (pattern
")

60. }

61.

62. StringTokeni zer tokenizer = new
StringTokeni zer (line);

63. whi | e
(tokeni zer. hasMoreTokens()) {

64.
wor d. set (t okeni zer. next Token());

65. out put.col |l ect(word, one);

66.
reporter.incrCounter(Counters. | NPUT_WORDS
1);

67. }

68.

69. if ((++nunRecords % 100) == 0) {

70. reporter. set Status("Finished
processing " + nunRecords + "
records " + "fromthe input file: "
+ inputFile);

71. }

72. }

73. }

74.

75. public static class Reduce extends
MapReduceBase i npl ement s
Reducer <Text, IntWitable, Text,
IntWitable> {

76. public void reduce(Text key,

Iterator<lntWitabl e> val ues,

Qut put Col | ect or<Text, IntWitabl e>
out put, Reporter reporter) throws
| OException {

Page 23

77.
78.
79.
80.
81.

82.
83.
84.
85.

86.

87.
88.
89.

90.

91.
92.

93.

94.

95.
96.

97.

Hadoop Map-Reduce Tutorial

int sum = O;

whi | e (val ues. hasNext ()) {

sum += val ues. next (). get();

}

out put. col | ect (key, new
IntWitable(sum);

}
}

public int run(String[] args)
t hrows Exception {

JobConf conf = new
JobConf (get Conf (), WbrdCount. cl ass);

conf . set JobNane("wordcount");

conf.

conf.

conf.

conf

conf.

conf.

conf.

set Qut put KeyCl ass(Text . cl ass);

set Qut put Val ued ass(I ntWitable.class);

set Mapper d ass(Mapd ass. cl ass) ;

. set Combi ner d ass(Reduce. cl ass);

set Reducer O ass(Reduce. cl ass);

set | nput For mat (Text | nput For mat . cl ass);

set Qut put For mat (Text Qut put For mat . cl ass);

Page 24

Hadoop Map-Reduce Tutorial

98.
99.

100.

101.
102.

103.
104.
105.
106.
107.
108.

109.

110.
111.
112.
113.
114.
115.

116.

117.

118.
119.

Li st<String> other_args = new
ArrayList<String>();

for (int i=0; i < args.length;
++i) {

if ("-skip".equals(args[i]) {
Di st ri but edCache. addCacheFi | e(new
Path(args[++i]).toUri (), conf);
} else {
other _args.add(args[i]);
}
}

conf. set | nput Pat h(new
Pat h(ot her _args[0]));

conf. set Qut put Pat h(new
Pat h(ot her _args[1]));

Jobd i ent.runJob(conf);

return O;

}

public static void main(String[]
args) throws Exception {

int res = Tool Runner. run(new
Configuration(), new WrdCount(),
args);

Systemexit(res);

}

Page 25

Hadoop Map-Reduce Tutorial

120.

7.2. Sample Runs
Sampl e text-files as input:

$ bin/ hadoop dfs -Is /usr/joe/wordcount/input/
/usr/joe/wordcount/input/fileOl
/usr/joe/wordcount/input/file02

$ bi n/ hadoop dfs -cat /usr/joe/wordcount/input/fileOl
Hel lo World, Bye Worl d!

$ bi n/ hadoop dfs -cat /usr/joe/wordcount/input/file02
Hel | o Hadoop, Goodbye the Hadoop.

Run the application:

$ bin/ hadoop jar /usr/joe/wordcount.jar org. morg. WrdCount
[usr/joe/wordcount/input /usr/joe/wordcount/out put

Output:

$ bin/ hadoop dfs -cat /usr/joe/ wordcount/out put/part-00000
Bye 1

Goodbye 1

Hadoop, 1

Hadoop. 1

Hello 2

Wrld! 1

Wrld, 1

the 1

Notice that the inputs differ from the first version we looked at, and how they affect the
outputs.

Now, lets plug-in a pattern-file which lists the word-patterns to be ignored, viathe
Di st ri but edCache.

$ hadoop dfs -cat /user/joe/wordcount/patterns.txt
\.

\,

\ !

t he

Run it again, this time with more options:

Page 26

Hadoop Map-Reduce Tutorial

$ bi n/ hadoop jar /usr/joe/wordcount.jar org. morg. WrdCount
- Dwor dcount . case. sensitive=true /usr/joe/wordcount/i nput
[usr/joel/wordcount/out put -skip

[user/joe/wordcount/patterns.txt

As expected, the output:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1

Goodbye 1

Hadoop 2

Hello 2

Wrld 2

Run it once more, thistime switch-off case-sensitivity:

$ bi n/ hadoop jar /usr/joe/wordcount.jar org. morg. WrdCount
- Dwor dcount . case. sensitive=fal se /usr/joe/wordcount/input
[usr/joel/wordcount/out put -skip

[user/joel/ wordcount/ patterns.txt

Sure enough, the outpult:

$ bin/ hadoop dfs -cat /usr/joe/ wordcount/out put/part-00000
bye 1

goodbye 1

hadoop 2

hello 2

world 2

7.3. Salient Points

The second version of Wor dCount improves upon the previous one by using some features
offered by the Map-Reduce framework:

« Demonstrates how applications can access configuration parametersinthe conf i gur e
method of the Mapper (and Reducer) implementations (lines 28-41).

o Demonstrateshow the Di st ri but edCache can be used to distribute read-only data
needed by the jobs. Here it allows the user to specify word-patterns to skip while
counting (line 102).

» Demonstrates the utility of the Tool interface and the Generi cOpti onsPar ser to
handle generic Hadoop command-line options (lines 85-86, 116).

« Demonstrates how applications can use Count er s (line 66) and how they can set

Page 27

Hadoop Map-Reduce Tutorial

application-specific status information viathe Repor t er instance passed to the map
(and r educe) method (line 70).

Java and JNI are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Page 28

	1 Purpose
	2 Pre-requisites
	3 Overview
	4 Inputs and Outputs
	5 Example: WordCount v1.0
	5.1 Source Code
	5.2 Usage
	5.3 Walk-through

	6 Map-Reduce - User Interfaces
	6.1 Payload
	6.1.1 Mapper
	6.1.1.1 How Many Maps?

	6.1.2 Reducer
	6.1.2.1 Shuffle
	6.1.2.2 Sort
	6.1.2.2.1 Secondary Sort

	6.1.2.3 Reduce
	6.1.2.4 How Many Reduces?
	6.1.2.5 Reducer NONE

	6.1.3 Partitioner
	6.1.4 Reporter
	6.1.5 OutputCollector

	6.2 Job Configuration
	6.3 Task Execution & Environment
	6.4 Job Submission and Monitoring
	6.4.1 Job Control

	6.5 Job Input
	6.5.1 InputSplit
	6.5.2 RecordReader

	6.6 Job Output
	6.6.1 Task Side-Effect Files
	6.6.2 RecordWriter

	6.7 Other Useful Features
	6.7.1 Counters
	6.7.2 DistributedCache
	6.7.3 Tool
	6.7.4 IsolationRunner
	6.7.5 JobControl
	6.7.6 Data Compression
	6.7.6.1 Intermediate Outputs
	6.7.6.2 Job Outputs

	7 Example: WordCount v2.0
	7.1 Source Code
	7.2 Sample Runs
	7.3 Salient Points

