
Copyright © The Apache Software Foundation. All rights reserved.

ZooKeeper Dynamic Reconfiguration

by

Table of contents

1 Overview.. 2

2 Changes to Configuration Format..2

 2.1 Specifying the client port... 2

 2.2 The standaloneEnabled flag..3

 2.3 The reconfigEnabled flag... 3

 2.4 Dynamic configuration file...4

 2.5 Backward compatibility.. 5

3 Upgrading to 3.5.0... 6

4 Dynamic Reconfiguration of the ZooKeeper Ensemble.. 6

 4.1 API.. 6

 4.2 Security... 7

 4.3 Retrieving the current dynamic configuration.. 8

 4.4 Modifying the current dynamic configuration..9

5 Rebalancing Client Connections.. 15

ZooKeeper Dynamic Reconfiguration

Page 2Copyright © The Apache Software Foundation. All rights reserved.

1 Overview

Prior to the 3.5.0 release, the membership and all other configuration parameters of
Zookeeper were static - loaded during boot and immutable at runtime. Operators resorted to
''rolling restarts'' - a manually intensive and error-prone method of changing the configuration
that has caused data loss and inconsistency in production.

Starting with 3.5.0, “rolling restarts” are no longer needed! ZooKeeper comes with full
support for automated configuration changes: the set of Zookeeper servers, their roles
(participant / observer), all ports, and even the quorum system can be changed dynamically,
without service interruption and while maintaining data consistency. Reconfigurations are
performed immediately, just like other operations in ZooKeeper. Multiple changes can be
done using a single reconfiguration command. The dynamic reconfiguration functionality
does not limit operation concurrency, does not require client operations to be stopped during
reconfigurations, has a very simple interface for administrators and no added complexity to
other client operations.

New client-side features allow clients to find out about configuration changes and to
update the connection string (list of servers and their client ports) stored in their ZooKeeper
handle. A probabilistic algorithm is used to rebalance clients across the new configuration
servers while keeping the extent of client migrations proportional to the change in ensemble
membership.

This document provides the administrator manual for reconfiguration. For a detailed
description of the reconfiguration algorithms, performance measurements, and more, please
see our paper:

Shraer, A., Reed, B., Malkhi, D., Junqueira, F. Dynamic Reconfiguration of
Primary/Backup Clusters. In USENIX Annual Technical Conference (ATC) (2012),
425-437
Links: paper (pdf), slides (pdf), video, hadoop summit slides

Note: Starting with 3.5.3, the dynamic reconfiguration feature is disabled by default, and has
to be explicitly turned on via reconfigEnabled configuration option.

2 Changes to Configuration Format

2.1 Specifying the client port

A client port of a server is the port on which the server accepts client connection requests.
Starting with 3.5.0 the clientPort and clientPortAddress configuration parameters should
no longer be used. Instead, this information is now part of the server keyword specification,
which becomes as follows:

https://www.usenix.org/conference/atc12/technical-sessions/presentation/shraer
http://www.slideshare.net/Hadoop_Summit/dynamic-reconfiguration-of-zookeeper
zookeeperAdmin.html#sc_advancedConfiguration

ZooKeeper Dynamic Reconfiguration

Page 3Copyright © The Apache Software Foundation. All rights reserved.

server.<positive id> = <address1>:<port1>:<port2>[:role];
[<client port address>:]<client port>

The client port specification is to the right of the semicolon. The client port address is
optional, and if not specified it defaults to "0.0.0.0". As usual, role is also optional, it can be
participant or observer (participant by default).

Examples of legal server statements:

• server.5 = 125.23.63.23:1234:1235;1236
• server.5 = 125.23.63.23:1234:1235:participant;1236
• server.5 = 125.23.63.23:1234:1235:observer;1236
• server.5 = 125.23.63.23:1234:1235;125.23.63.24:1236
• server.5 =

125.23.63.23:1234:1235:participant;125.23.63.23:1236

2.2 The standaloneEnabled flag

Prior to 3.5.0, one could run ZooKeeper in Standalone mode or in a Distributed mode. These
are separate implementation stacks, and switching between them during run time is not
possible. By default (for backward compatibility) standaloneEnabled is set to true. The
consequence of using this default is that if started with a single server the ensemble will not
be allowed to grow, and if started with more than one server it will not be allowed to shrink
to contain fewer than two participants.

Setting the flag to false instructs the system to run the Distributed software stack even if there
is only a single participant in the ensemble. To achieve this the (static) configuration file
should contain:

standaloneEnabled=false

With this setting it is possible to start a ZooKeeper ensemble containing a single participant
and to dynamically grow it by adding more servers. Similarly, it is possible to shrink an
ensemble so that just a single participant remains, by removing servers.

Since running the Distributed mode allows more flexibility, we recommend setting the flag to
false. We expect that the legacy Standalone mode will be deprecated in the future.

2.3 The reconfigEnabled flag

Starting with 3.5.0 and prior to 3.5.3, there is no way to disable dynamic reconfiguration
feature. We would like to offer the option of disabling reconfiguration feature because with
reconfiguration enabled, we have a security concern that a malicious actor can make arbitrary
changes to the configuration of a ZooKeeper ensemble, including adding a compromised
server to the ensemble. We prefer to leave to the discretion of the user to decide whether to
enable it or not and make sure that the appropriate security measure are in place. So in 3.5.3

ZooKeeper Dynamic Reconfiguration

Page 4Copyright © The Apache Software Foundation. All rights reserved.

the reconfigEnabled configuration option is introduced such that the reconfiguration feature
can be completely disabled and any attempts to reconfigure a cluster through reconfig API
with or without authentication will fail by default, unless reconfigEnabled is set to true.

To set the option to true, the configuration file (zoo.cfg) should contain:

reconfigEnabled=true

2.4 Dynamic configuration file

Starting with 3.5.0 we're distinguishing between dynamic configuration parameters, which
can be changed during runtime, and static configuration parameters, which are read from a
configuration file when a server boots and don't change during its execution. For now, the
following configuration keywords are considered part of the dynamic configuration: server,
group and weight.

Dynamic configuration parameters are stored in a separate file on the server (which we call
the dynamic configuration file). This file is linked from the static config file using the new
dynamicConfigFile keyword.

Example

zoo_replicated1.cfgzoo_replicated1.cfg

tickTime=2000
dataDir=/zookeeper/data/zookeeper1
initLimit=5
syncLimit=2
dynamicConfigFile=/zookeeper/conf/zoo_replicated1.cfg.dynamic

zoo_replicated1.cfg.dynamiczoo_replicated1.cfg.dynamic

server.1=125.23.63.23:2780:2783:participant;2791
server.2=125.23.63.24:2781:2784:participant;2792
server.3=125.23.63.25:2782:2785:participant;2793

When the ensemble configuration changes, the static configuration parameters remain
the same. The dynamic parameters are pushed by ZooKeeper and overwrite the dynamic
configuration files on all servers. Thus, the dynamic configuration files on the different
servers are usually identical (they can only differ momentarily when a reconfiguration is
in progress, or if a new configuration hasn't propagated yet to some of the servers). Once
created, the dynamic configuration file should not be manually altered. Changed are only
made through the new reconfiguration commands outlined below. Note that changing the
config of an offline cluster could result in an inconsistency with respect to configuration
information stored in the ZooKeeper log (and the special configuration znode, populated
from the log) and is therefore highly discouraged.

zookeeperAdmin.html#sc_advancedConfiguration

ZooKeeper Dynamic Reconfiguration

Page 5Copyright © The Apache Software Foundation. All rights reserved.

Example 2

Users may prefer to initially specify a single configuration file. The following is thus also
legal:

zoo_replicated1.cfgzoo_replicated1.cfg

tickTime=2000
dataDir=/zookeeper/data/zookeeper1
initLimit=5
syncLimit=2
clientPort=2791 // note that this line is now redundant and therefore not
 recommended
server.1=125.23.63.23:2780:2783:participant;2791
server.2=125.23.63.24:2781:2784:participant;2792
server.3=125.23.63.25:2782:2785:participant;2793

The configuration files on each server will be automatically split into dynamic and
static files, if they are not already in this format. So the configuration file above will be
automatically transformed into the two files in Example 1. Note that the clientPort and
clientPortAddress lines (if specified) will be automatically removed during this process, if
they are redundant (as in the example above). The original static configuration file is backed
up (in a .bak file).

2.5 Backward compatibility

We still support the old configuration format. For example, the following configuration file is
acceptable (but not recommended):

zoo_replicated1.cfgzoo_replicated1.cfg

tickTime=2000
dataDir=/zookeeper/data/zookeeper1
initLimit=5
syncLimit=2
clientPort=2791
server.1=125.23.63.23:2780:2783:participant
server.2=125.23.63.24:2781:2784:participant
server.3=125.23.63.25:2782:2785:participant

During boot, a dynamic configuration file is created and contains the dynamic part of the
configuration as explained earlier. In this case, however, the line "clientPort=2791" will
remain in the static configuration file of server 1 since it is not redundant -- it was not
specified as part of the "server.1=..." using the format explained in the section Changes to
Configuration Format. If a reconfiguration is invoked that sets the client port of server 1, we
remove "clientPort=2791" from the static configuration file (the dynamic file now contain
this information as part of the specification of server 1).

ZooKeeper Dynamic Reconfiguration

Page 6Copyright © The Apache Software Foundation. All rights reserved.

3 Upgrading to 3.5.0

Upgrading a running ZooKeeper ensemble to 3.5.0 should be done only after upgrading your
ensemble to the 3.4.6 release. Note that this is only necessary for rolling upgrades (if you're
fine with shutting down the system completely, you don't have to go through 3.4.6). If you
attempt a rolling upgrade without going through 3.4.6 (for example from 3.4.5), you may get
the following error:

2013-01-30 11:32:10,663 [myid:2] - INFO [localhost/127.0.0.1:2784:QuorumCnxManager
$Listener@498] - Received connection request /127.0.0.1:60876
2013-01-30 11:32:10,663 [myid:2] - WARN [localhost/127.0.0.1:2784:QuorumCnxManager@349] -
 Invalid server id: -65536

During a rolling upgrade, each server is taken down in turn and rebooted with the new 3.5.0
binaries. Before starting the server with 3.5.0 binaries, we highly recommend updating the
configuration file so that all server statements "server.x=..." contain client ports (see the
section Specifying the client port). As explained earlier you may leave the configuration in
a single file, as well as leave the clientPort/clientPortAddress statements (although if you
specify client ports in the new format, these statements are now redundant).

4 Dynamic Reconfiguration of the ZooKeeper Ensemble

The ZooKeeper Java and C API were extended with getConfig and reconfig commands that
facilitate reconfiguration. Both commands have a synchronous (blocking) variant and an
asynchronous one. We demonstrate these commands here using the Java CLI, but note that
you can similarly use the C CLI or invoke the commands directly from a program just like
any other ZooKeeper command.

4.1 API

There are two sets of APIs for both Java and C client.

Reconfiguration API
Reconfiguration API is used to reconfigure the ZooKeeper cluster. Starting with 3.5.3,
reconfiguration Java APIs are moved into ZooKeeperAdmin class from ZooKeeper class,
and use of this API requires ACL setup and user authentication (see Security for more
information.).
Get Configuration API
Get configuration APIs are used to retrieve ZooKeeper cluster configuration information
stored in /zookeeper/config znode. Use of this API does not require specific setup or
authentication, because /zookeeper/config is readable to any users.

ZooKeeper Dynamic Reconfiguration

Page 7Copyright © The Apache Software Foundation. All rights reserved.

4.2 Security

Prior to 3.5.3, there is no enforced security mechanism over reconfig so any ZooKeeper
clients that can connect to ZooKeeper server ensemble will have the ability to change the
state of a ZooKeeper cluster via reconfig. It is thus possible for a malicious client to add
compromised server to an ensemble, e.g., add a compromised server, or remove legitimate
servers. Cases like these could be security vulnerabilities on a case by case basis.

To address this security concern, we introduced access control over reconfig starting from
3.5.3 such that only a specific set of users can use reconfig commands or APIs, and these
users need be configured explicitly. In addition, the setup of ZooKeeper cluster must enable
authentication so ZooKeeper clients can be authenticated.

We also provides an escape hatch for users who operate and interact with a ZooKeeper
ensemble in a secured environment (i.e. behind company firewall). For those users who want
to use reconfiguration feature but don't want the overhead of configuring an explicit list of
authorized user for reconfig access checks, they can set "skipACL" to "yes" which will skip
ACL check and allow any user to reconfigure cluster.

Overall, ZooKeeper provides flexible configuration options for the reconfigure feature that
allow a user to choose based on user's security requirement. We leave to the discretion of the
user to decide appropriate security measure are in place.

Access Control
The dynamic configuration is stored in a special znode ZooDefs.CONFIG_NODE = /
zookeeper/config. This node by default is read only for all users, except super user and
users that's explicitly configured for write access.

Clients that need to use reconfig commands or reconfig API should be configured as
users that have write access to CONFIG_NODE. By default, only the super user has full
control including write access to CONFIG_NODE. Additional users can be granted write
access through superuser by setting an ACL that has write permission associated with
specified user.

A few examples of how to setup ACLs and use reconfiguration API with authentication
can be found in ReconfigExceptionTest.java and TestReconfigServer.cc.
Authentication
Authentication of users is orthogonal to the access control and is delegated to existing
authentication mechanism supported by ZooKeeper's pluggable authentication schemes.
See ZooKeeper and SASL for more details on this topic.
Disable ACL check
ZooKeeper supports "skipACL" option such that ACL check will be completely skipped,
if skipACL is set to "yes". In such cases any unauthenticated users can use reconfig API.

zookeeperAdmin.html#sc_authOptions
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zookeeper+and+SASL
zookeeperAdmin.html#sc_authOptions

ZooKeeper Dynamic Reconfiguration

Page 8Copyright © The Apache Software Foundation. All rights reserved.

4.3 Retrieving the current dynamic configuration

The dynamic configuration is stored in a special znode ZooDefs.CONFIG_NODE = /
zookeeper/config. The new config CLI command reads this znode (currently it is simply
a wrapper to get /zookeeper/config). As with normal reads, to retrieve the latest
committed value you should do a sync first.

[zk: 127.0.0.1:2791(CONNECTED) 3] config
server.1=localhost:2780:2783:participant;localhost:2791
server.2=localhost:2781:2784:participant;localhost:2792
server.3=localhost:2782:2785:participant;localhost:2793
version=400000003

Notice the last line of the output. This is the configuration version. The version equals to
the zxid of the reconfiguration command which created this configuration. The version
of the first established configuration equals to the zxid of the NEWLEADER message
sent by the first successfully established leader. When a configuration is written to a
dynamic configuration file, the version automatically becomes part of the filename and
the static configuration file is updated with the path to the new dynamic configuration file.
Configuration files corresponding to earlier versions are retained for backup purposes.

During boot time the version (if it exists) is extracted from the filename. The version should
never be altered manually by users or the system administrator. It is used by the system to
know which configuration is most up-to-date. Manipulating it manually can result in data
loss and inconsistency.

Just like a get command, the config CLI command accepts the -w flag for setting a watch
on the znode, and -s flag for displaying the Stats of the znode. It additionally accepts a new
flag -c which outputs only the version and the client connection string corresponding to the
current configuration. For example, for the configuration above we would get:

[zk: 127.0.0.1:2791(CONNECTED) 17] config -c
400000003 localhost:2791,localhost:2793,localhost:2792

Note that when using the API directly, this command is called getConfig.

As any read command it returns the configuration known to the follower to which your
client is connected, which may be slightly out-of-date. One can use the sync command for
stronger guarantees. For example using the Java API:

zk.sync(ZooDefs.CONFIG_NODE, void_callback, context);
zk.getConfig(watcher, callback, context);

Note: in 3.5.0 it doesn't really matter which path is passed to the sync() command as
all the server's state is brought up to date with the leader (so one could use a different path
instead of ZooDefs.CONFIG_NODE). However, this may change in the future.

ZooKeeper Dynamic Reconfiguration

Page 9Copyright © The Apache Software Foundation. All rights reserved.

4.4 Modifying the current dynamic configuration

Modifying the configuration is done through the reconfig command. There are two modes
of reconfiguration: incremental and non-incremental (bulk). The non-incremental simply
specifies the new dynamic configuration of the system. The incremental specifies changes to
the current configuration. The reconfig command returns the new configuration.

A few examples are in: ReconfigTest.java, ReconfigRecoveryTest.java and
TestReconfigServer.cc.

4.4.1 General

Removing servers: Any server can be removed, including the leader (although removing
the leader will result in a short unavailability, see Figures 6 and 8 in the paper). The server
will not be shut-down automatically. Instead, it becomes a "non-voting follower". This is
somewhat similar to an observer in that its votes don't count towards the Quorum of votes
necessary to commit operations. However, unlike a non-voting follower, an observer doesn't
actually see any operation proposals and does not ACK them. Thus a non-voting follower
has a more significant negative effect on system throughput compared to an observer. Non-
voting follower mode should only be used as a temporary mode, before shutting the server
down, or adding it as a follower or as an observer to the ensemble. We do not shut the
server down automatically for two main reasons. The first reason is that we do not want
all the clients connected to this server to be immediately disconnected, causing a flood
of connection requests to other servers. Instead, it is better if each client decides when to
migrate independently. The second reason is that removing a server may sometimes (rarely)
be necessary in order to change it from "observer" to "participant" (this is explained in the
section Additional comments).

Note that the new configuration should have some minimal number of participants in order
to be considered legal. If the proposed change would leave the cluster with less than 2
participants and standalone mode is enabled (standaloneEnabled=true, see the section The
standaloneEnabled flag), the reconfig will not be processed (BadArgumentsException). If
standalone mode is disabled (standaloneEnabled=false) then its legal to remain with 1 or
more participants.

Adding servers: Before a reconfiguration is invoked, the administrator must make sure that
a quorum (majority) of participants from the new configuration are already connected and
synced with the current leader. To achieve this we need to connect a new joining server to the
leader before it is officially part of the ensemble. This is done by starting the joining server
using an initial list of servers which is technically not a legal configuration of the system but
(a) contains the joiner, and (b) gives sufficient information to the joiner in order for it to find
and connect to the current leader. We list a few different options of doing this safely.

https://www.usenix.org/conference/usenixfederatedconferencesweek/dynamic-recon%EF%AC%81guration-primarybackup-clusters

ZooKeeper Dynamic Reconfiguration

Page 10Copyright © The Apache Software Foundation. All rights reserved.

1. Initial configuration of joiners is comprised of servers in the last committed configuration
and one or more joiners, where joiners are listed as observers. For example, if servers
D and E are added at the same time to (A, B, C) and server C is being removed, the
initial configuration of D could be (A, B, C, D) or (A, B, C, D, E), where D and E
are listed as observers. Similarly, the configuration of E could be (A, B, C, E) or (A,
B, C, D, E), where D and E are listed as observers. Note that listing the joiners as
observers will not actually make them observers - it will only prevent them from
accidentally forming a quorum with other joiners. Instead, they will contact the
servers in the current configuration and adopt the last committed configuration (A, B, C),
where the joiners are absent. Configuration files of joiners are backed up and replaced
automatically as this happens. After connecting to the current leader, joiners become non-
voting followers until the system is reconfigured and they are added to the ensemble (as
participant or observer, as appropriate).

2. Initial configuration of each joiner is comprised of servers in the last committed
configuration + the joiner itself, listed as a participant. For example, to add a new
server D to a configuration consisting of servers (A, B, C), the administrator can start
D using an initial configuration file consisting of servers (A, B, C, D). If both D and E
are added at the same time to (A, B, C), the initial configuration of D could be (A, B,
C, D) and the configuration of E could be (A, B, C, E). Similarly, if D is added and C is
removed at the same time, the initial configuration of D could be (A, B, C, D). Never list
more than one joiner as participant in the initial configuration (see warning below).

3. Whether listing the joiner as an observer or as participant, it is also fine not to list all the
current configuration servers, as long as the current leader is in the list. For example,
when adding D we could start D with a configuration file consisting of just (A, D) if A is
the current leader. however this is more fragile since if A fails before D officially joins
the ensemble, D doesn’t know anyone else and therefore the administrator will have to
intervene and restart D with another server list.

WarningWarning

Never specify more than one joining server in the same initial configuration as participants.
Currently, the joining servers don’t know that they are joining an existing ensemble; if multiple
joiners are listed as participants they may form an independent quorum creating a split-brain
situation such as processing operations independently from your main ensemble. It is OK to list
multiple joiners as observers in an initial config.

If the configuration of existing servers changes or they become unavailable before the
joiner succeeds to connect and learn obout configuration changes, the joiner may need to be
restarted with an updated configuration file in order to be able to connect.

Finally, note that once connected to the leader, a joiner adopts the last committed
configuration, in which it is absent (the initial config of the joiner is backed up before being

ZooKeeper Dynamic Reconfiguration

Page 11Copyright © The Apache Software Foundation. All rights reserved.

rewritten). If the joiner restarts in this state, it will not be able to boot since it is absent
from its configuration file. In order to start it you’ll once again have to specify an initial
configuration.

Modifying server parameters: One can modify any of the ports of a server, or its role
(participant/observer) by adding it to the ensemble with different parameters. This works
in both the incremental and the bulk reconfiguration modes. It is not necessary to remove
the server and then add it back; just specify the new parameters as if the server is not yet
in the system. The server will detect the configuration change and perform the necessary
adjustments. See an example in the section Incremental mode and an exception to this rule in
the section Additional comments.

It is also possible to change the Quorum System used by the ensemble (for example, change
the Majority Quorum System to a Hierarchical Quorum System on the fly). This, however, is
only allowed using the bulk (non-incremental) reconfiguration mode. In general, incremental
reconfiguration only works with the Majority Quorum System. Bulk reconfiguration works
with both Hierarchical and Majority Quorum Systems.

Performance Impact: There is practically no performance impact when removing a
follower, since it is not being automatically shut down (the effect of removal is that the
server's votes are no longer being counted). When adding a server, there is no leader change
and no noticeable performance disruption. For details and graphs please see Figures 6, 7 and
8 in the paper.

The most significant disruption will happen when a leader change is caused, in one of the
following cases:
1. Leader is removed from the ensemble.
2. Leader's role is changed from participant to observer.
3. The port used by the leader to send transactions to others (quorum port) is modified.

In these cases we perform a leader hand-off where the old leader nominates a new leader.
The resulting unavailability is usually shorter than when a leader crashes since detecting
leader failure is unnecessary and electing a new leader can usually be avoided during a hand-
off (see Figures 6 and 8 in the paper).

When the client port of a server is modified, it does not drop existing client connections. New
connections to the server will have to use the new client port.

Progress guarantees: Up to the invocation of the reconfig operation, a quorum of the
old configuration is required to be available and connected for ZooKeeper to be able
to make progress. Once reconfig is invoked, a quorum of both the old and of the new
configurations must be available. The final transition happens once (a) the new configuration
is activated, and (b) all operations scheduled before the new configuration is activated by
the leader are committed. Once (a) and (b) happen, only a quorum of the new configuration

https://www.usenix.org/conference/usenixfederatedconferencesweek/dynamic-recon%EF%AC%81guration-primarybackup-clusters
https://www.usenix.org/conference/usenixfederatedconferencesweek/dynamic-recon%EF%AC%81guration-primarybackup-clusters

ZooKeeper Dynamic Reconfiguration

Page 12Copyright © The Apache Software Foundation. All rights reserved.

is required. Note, however, that neither (a) nor (b) are visible to a client. Specifically, when
a reconfiguration operation commits, it only means that an activation message was sent out
by the leader. It does not necessarily mean that a quorum of the new configuration got this
message (which is required in order to activate it) or that (b) has happened. If one wants
to make sure that both (a) and (b) has already occurred (for example, in order to know that
it is safe to shut down old servers that were removed), one can simply invoke an update
(set-data, or some other quorum operation, but not a sync) and wait for it to commit. An
alternative way to achieve this was to introduce another round to the reconfiguration protocol
(which, for simplicity and compatibility with Zab, we decided to avoid).

4.4.2 Incremental mode

The incremental mode allows adding and removing servers to the current configuration.
Multiple changes are allowed. For example:

> reconfig -remove 3 -add server.5=125.23.63.23:1234:1235;1236

Both the add and the remove options get a list of comma separated arguments (no spaces):

> reconfig -remove 3,4 -add
server.5=localhost:2111:2112;2113,6=localhost:2114:2115:observer;2116

The format of the server statement is exactly the same as described in the section Specifying
the client port and includes the client port. Notice that here instead of "server.5=" you can
just say "5=". In the example above, if server 5 is already in the system, but has different
ports or is not an observer, it is updated and once the configuration commits becomes an
observer and starts using these new ports. This is an easy way to turn participants into
observers and vise versa or change any of their ports, without rebooting the server.

ZooKeeper supports two types of Quorum Systems – the simple Majority system (where
the leader commits operations after receiving ACKs from a majority of voters) and a more
complex Hierarchical system, where votes of different servers have different weights and
servers are divided into voting groups. Currently, incremental reconfiguration is allowed
only if the last proposed configuration known to the leader uses a Majority Quorum System
(BadArgumentsException is thrown otherwise).

Incremental mode - examples using the Java API:

List<String> leavingServers = new ArrayList<String>();
leavingServers.add("1");
leavingServers.add("2");
byte[] config = zk.reconfig(null, leavingServers, null, -1, new Stat());

List<String> leavingServers = new ArrayList<String>();
List<String> joiningServers = new ArrayList<String>();
leavingServers.add("1");
joiningServers.add("server.4=localhost:1234:1235;1236");
byte[] config = zk.reconfig(joiningServers, leavingServers, null, -1, new Stat());

ZooKeeper Dynamic Reconfiguration

Page 13Copyright © The Apache Software Foundation. All rights reserved.

String configStr = new String(config);
System.out.println(configStr);

There is also an asynchronous API, and an API accepting comma separated Strings instead of
List<String>. See src/java/main/org/apache/zookeeper/ZooKeeper.java.

4.4.3 Non-incremental mode

The second mode of reconfiguration is non-incremental, whereby a client gives a complete
specification of the new dynamic system configuration. The new configuration can either be
given in place or read from a file:

> reconfig -file newconfig.cfg //newconfig.cfg is a dynamic config file, see
Dynamic configuration file

> reconfig -members
server.1=125.23.63.23:2780:2783:participant;2791,server.2=125.23.63.24:2781:2784:participant;2792,server.3=125.23.63.25:2782:2785:participant;2793

The new configuration may use a different Quorum System. For example, you may specify a
Hierarchical Quorum System even if the current ensemble uses a Majority Quorum System.

Bulk mode - example using the Java API:

List<String> newMembers = new ArrayList<String>();
newMembers.add("server.1=1111:1234:1235;1236");
newMembers.add("server.2=1112:1237:1238;1239");
newMembers.add("server.3=1114:1240:1241:observer;1242");

byte[] config = zk.reconfig(null, null, newMembers, -1, new Stat());

String configStr = new String(config);
System.out.println(configStr);

There is also an asynchronous API, and an API accepting comma separated String containing
the new members instead of List<String>. See src/java/main/org/apache/zookeeper/
ZooKeeper.java.

4.4.4 Conditional reconfig

Sometimes (especially in non-incremental mode) a new proposed configuration depends
on what the client "believes" to be the current configuration, and should be applied only to
that configuration. Specifically, the reconfig succeeds only if the last configuration at the
leader has the specified version.

> reconfig -file <filename> -v <version>

In the previously listed Java examples, instead of -1 one could specify a configuration
version to condition the reconfiguration.

ZooKeeper Dynamic Reconfiguration

Page 14Copyright © The Apache Software Foundation. All rights reserved.

4.4.5 Error conditions

In addition to normal ZooKeeper error conditions, a reconfiguration may fail for the
following reasons:
1. another reconfig is currently in progress (ReconfigInProgress)
2. the proposed change would leave the cluster with less than 2 participants, in case

standalone mode is enabled, or, if standalone mode is disabled then its legal to remain
with 1 or more participants (BadArgumentsException)

3. no quorum of the new configuration was connected and up-to-date with the leader when
the reconfiguration processing began (NewConfigNoQuorum)

4. -v x was specified, but the version y of the latest configuration is not x
(BadVersionException)

5. an incremental reconfiguration was requested but the last configuration at the leader uses
a Quorum System which is different from the Majority system (BadArgumentsException)

6. syntax error (BadArgumentsException)
7. I/O exception when reading the configuration from a file (BadArgumentsException)

Most of these are illustrated by test-cases in ReconfigFailureCases.java.

4.4.6 Additional comments

Liveness: To better understand the difference between incremental and non-incremental
reconfiguration, suppose that client C1 adds server D to the system while a different client
C2 adds server E. With the non-incremental mode, each client would first invoke config
to find out the current configuration, and then locally create a new list of servers by adding
its own suggested server. The new configuration can then be submitted using the non-
incremental reconfig command. After both reconfigurations complete, only one of E
or D will be added (not both), depending on which client's request arrives second to the
leader, overwriting the previous configuration. The other client can repeat the process until
its change takes effect. This method guarantees system-wide progress (i.e., for one of the
clients), but does not ensure that every client succeeds. To have more control C2 may request
to only execute the reconfiguration in case the version of the current configuration hasn't
changed, as explained in the section Conditional reconfig. In this way it may avoid blindly
overwriting the configuration of C1 if C1's configuration reached the leader first.

With incremental reconfiguration, both changes will take effect as they are simply applied
by the leader one after the other to the current configuration, whatever that is (assuming that
the second reconfig request reaches the leader after it sends a commit message for the first
reconfig request -- currently the leader will refuse to propose a reconfiguration if another
one is already pending). Since both clients are guaranteed to make progress, this method
guarantees stronger liveness. In practice, multiple concurrent reconfigurations are probably
rare. Non-incremental reconfiguration is currently the only way to dynamically change the

ZooKeeper Dynamic Reconfiguration

Page 15Copyright © The Apache Software Foundation. All rights reserved.

Quorum System. Incremental configuration is currently only allowed with the Majority
Quorum System.

Changing an observer into a follower: Clearly, changing a server that participates in voting
into an observer may fail if error (2) occurs, i.e., if fewer than the minimal allowed number
of participants would remain. However, converting an observer into a participant may
sometimes fail for a more subtle reason: Suppose, for example, that the current configuration
is (A, B, C, D), where A is the leader, B and C are followers and D is an observer. In
addition, suppose that B has crashed. If a reconfiguration is submitted where D is said to
become a follower, it will fail with error (3) since in this configuration, a majority of voters
in the new configuration (any 3 voters), must be connected and up-to-date with the leader.
An observer cannot acknowledge the history prefix sent during reconfiguration, and therefore
it does not count towards these 3 required servers and the reconfiguration will be aborted. In
case this happens, a client can achieve the same task by two reconfig commands: first invoke
a reconfig to remove D from the configuration and then invoke a second command to add it
back as a participant (follower). During the intermediate state D is a non-voting follower and
can ACK the state transfer performed during the second reconfig comand.

5 Rebalancing Client Connections

When a ZooKeeper cluster is started, if each client is given the same connection string (list
of servers), the client will randomly choose a server in the list to connect to, which makes
the expected number of client connections per server the same for each of the servers. We
implemented a method that preserves this property when the set of servers changes through
reconfiguration. See Sections 4 and 5.1 in the paper.

In order for the method to work, all clients must subscribe to configuration changes (by
setting a watch on /zookeeper/config either directly or through the getConfig API
command). When the watch is triggered, the client should read the new configuration
by invoking sync and getConfig and if the configuration is indeed new invoke the
updateServerList API command. To avoid mass client migration at the same
time, it is better to have each client sleep a random short period of time before invoking
updateServerList.

A few examples can be found in: StaticHostProviderTest.java and
TestReconfig.cc

Example (this is not a recipe, but a simplified example just to explain the general idea):

public void process(WatchedEvent event) {
 synchronized (this) {
 if (event.getType() == EventType.None) {
 connected = (event.getState() == KeeperState.SyncConnected);
 notifyAll();
 } else if (event.getPath()!=null && event.getPath().equals(ZooDefs.CONFIG_NODE)) {

https://www.usenix.org/conference/usenixfederatedconferencesweek/dynamic-recon%EF%AC%81guration-primarybackup-clusters

ZooKeeper Dynamic Reconfiguration

Page 16Copyright © The Apache Software Foundation. All rights reserved.

 // in prod code never block the event thread!
 zk.sync(ZooDefs.CONFIG_NODE, this, null);
 zk.getConfig(this, this, null);
 }
 }
}
public void processResult(int rc, String path, Object ctx, byte[] data, Stat stat) {
 if (path!=null && path.equals(ZooDefs.CONFIG_NODE)) {
 String config[] = ConfigUtils.getClientConfigStr(new String(data)).split(" "); //
 similar to config -c
 long version = Long.parseLong(config[0], 16);
 if (this.configVersion == null){
 this.configVersion = version;
 } else if (version > this.configVersion) {
 hostList = config[1];
 try {
 // the following command is not blocking but may cause the client to close
 the socket and
 // migrate to a different server. In practice its better to wait a short
 period of time, chosen
 // randomly, so that different clients migrate at different times
 zk.updateServerList(hostList);
 } catch (IOException e) {
 System.err.println("Error updating server list");
 e.printStackTrace();
 }
 this.configVersion = version;
} } }

	Table of contents
	1 Overview
	2 Changes to Configuration Format
	2.1 Specifying the client port
	2.2 The standaloneEnabled flag
	2.3 The reconfigEnabled flag
	2.4 Dynamic configuration file
	2.5 Backward compatibility

	3 Upgrading to 3.5.0
	4 Dynamic Reconfiguration of the ZooKeeper Ensemble
	4.1 API
	4.2 Security
	4.3 Retrieving the current dynamic configuration
	4.4 Modifying the current dynamic configuration
	4.4.1 General
	4.4.2 Incremental mode
	4.4.3 Non-incremental mode
	4.4.4 Conditional reconfig
	4.4.5 Error conditions
	4.4.6 Additional comments

	5 Rebalancing Client Connections

