ZooKeeper Java Example

by

Table of contents
1A SIMPIE WELCH CHIENL.......eiieiiiieie ettt s sa e ae e
I (S o (U] 1= .07 1SR
1.2 Program DESION......ccouiiieieesieeeeseesieseesteesteeeesteesesseesseesesseesseesesseesseensesseensessesseensens
2 TNE EXECULON ClBSS......ciiiieiiiiiisiesiieieeee ettt sttt bbbttt b et e
3 The DataM ONItOr ClasS.......cccueiieierieiieseese e eee e ste st e st esee e sre e seeseesseesseeaesseeseeenensneens
4 COMPIELE SOUMCE LISHNGS. ... eveeiateriieieeieiesiesie sttt ettt e e se e sb et n e e s b snenne s

ZooKeeper Java Example

1 A Simple Watch Client

To introduce you to the ZooK eeper Java API, we develop here a very simple watch client.
This ZooK eeper client watches a ZooK eegper node for changes and responds to by starting or
stopping a program.

1.1 Requirements

The client has four requirements:
* It takesas parameters:

» the address of the ZooK eeper service

» the name of aznode - the one to be watched

» the name of afileto write the output to

e an executable with arguments.
» It fetches the data associated with the znode and starts the executable.
» |If the znode changes, the client refetches the contents and restarts the executable.
» |If the znode disappears, the client kills the executable.

1.2 Program Design

Conventionally, ZooK eeper applications are broken into two units, one which maintains

the connection, and the other which monitors data. In this application, the class called the
Executor maintains the ZooK eeper connection, and the class called the DataM onitor
monitors the data in the ZooK eeper tree. Also, Executor contains the main thread and
contains the execution logic. It isresponsible for what little user interaction there is, as well
as interaction with the exectuable program you pass in as an argument and which the sample
(per the requirements) shuts down and restarts, according to the state of the znode.

2 The Executor Class

The Executor object is the primary container of the sample application. It contains both the
ZooK eeper object, DataM onitor, as described above in Program Design.

/'l fromthe Executor class...

public static void main(String[] args) {
if (args.length < 4) {
System err
.println("USAGE: Executor hostPort znode fil enane program[args ...]");
System exit(2);
}
String hostPort = args[O0];
String znode = args[1];
String filename = args[2];
String exec[] = new String[args.length - 3];

Page 2

ZooKeeper Java Example

Recall that the Executor'sjob is to start and stop the executable whose name you passin on
the command line. It does thisin response to events fired by the ZooK eeper object. Asyou
can see in the code above, the Executor passes areference to itself as the Watcher argument
in the ZooK eeper constructor. It also passes areference to itself as DataMonitorListener
argument to the DataMonitor constructor. Per the Executor's definition, it implements both
these interfaces:

The Watcher interface is defined by the ZooK eeper Java API. ZooK eeper usesit to
communicate back to its container. It supports only one method, pr ocess() , and

ZooK eeper uses it to communciates generic events that the main thread would be intersted

in, such as the state of the ZooK eeper connection or the ZooK eeper session.The Executor

in this example simply forwards those events down to the DataMonitor to decide what to do
with them. It does this ssimply to illustrate the point that, by convention, the Executor or some
Executor-like object "owns" the ZooK eeper connection, but it is free to delegate the events

to other events to other objects. It also uses this as the default channel on which to fire watch
events. (More on this later.)

)
[}
«Q
[0)
w

ZooKeeper Java Example

The DataM onitor Listener interface, on the other hand, is not part of the the ZooK eeper
API. It isacompletely custom interface, designed for this sample application. The
DataMonitor object uses it to communicate back to its container, which is also the the
Executor object. The DataMonitorListener interface looks like this:

Thisinterface is defined in the DataM onitor class and implemented in the Executor class.
When Execut or . exi st s() isinvoked, the Executor decides whether to start up or shut
down per the requirements. Recall that the requires say to kill the executable when the znode
ceases to exist.

When Execut or . cl osi ng() isinvoked, the Executor decides whether or not to shut
itself down in response to the ZooK eeper connection permanently disappearing.

Asyou might have guessed, DataMonitor is the object that invokes these methods, in
response to changes in ZooK eeper's state.

Here are Executor's implementation of Dat aMoni t or Li st ener . exi st s() and
Dat aMoni t or Li st ener. cl osi ng:

ZooKeeper Java Example

3 The DataMonitor Class

The DataMonitor class has the meat of the ZooKeeper logic. It is mostly asynchronous and
event driven. DataMonitor kicks things off in the constructor with:

Thecall to ZooKeeper . exi st s() checksfor the existence of the znode, sets awatch,
and passes areferenceto itself (t hi s) asthe completion callback object. In this sense, it
kicks things off, since the real processing happens when the watch is triggered.

Don't confuse the completion callback with the watch callback. The ZooKeeper . exi st s()
completion callback, which happens to be the method St at Cal | back. processResul t ()

Page 5

ZooKeeper Java Example

implemented in the DataMonitor object, isinvoked when the asynchronous setting of the watch
operation (by ZooKeeper . exi st s()) completes on the server.

Thetriggering of the watch, on the other hand, sends an event to the Executor object, since the
Executor registered as the Watcher of the ZooK eeper object.

Asan aside, you might note that the DataMonitor could also register itself as the Watcher for this
particular watch event. Thisis new to ZooKeeper 3.0.0 (the support of multiple Watchers). In this
example, however, DataMonitor does not register as the Watcher.

When the ZooKeeper . exi st s() operation completes on the server, the ZooK eeper API
invokes this completion callback on the client:

The code first checks the error codes for znode existence, fatal errors, and recoverable errors.
If thefile (or znode) exists, it gets the data from the znode, and then invoke the exists()

Page 6

ZooKeeper Java Example

callback of Executor if the state has changed. Note, it doesn't have to do any Exception
processing for the getData call because it has watches pending for anything that could cause
an error: if the node is deleted before it calls ZooKeeper . get Dat a() , the watch event
set by the ZooKeeper . exi st s() triggersacallback; if thereisacommunication error, a
connection watch event fires when the connection comes back up.

Finally, notice how DataMonitor processes watch events:

If the client-side ZooK eeper libraries can re-establish the communication channel
(SyncConnected event) to ZooK eeper before session expiration (Expired event) all of the
session's watches will automatically be re-established with the server (auto-reset of watches
isnew in ZooK eeper 3.0.0). See ZooK eeper Watches in the programmer guide for more on
this. A bit lower down in this function, when DataMonitor gets an event for aznode, it calls
ZooKeeper . exi st s() to find out what has changed.

4 Complete Source Listings

Executor.javaExecutor.java

Page 7

zookeeperProgrammers.html#ch_zkWatches

ZooKeeper Java Example

Copyright © The Apache Software Foundation. All rights reserved. Page 8

ZooKeeper Java Example

Copyright © The Apache Software Foundation. All rights reserved. Page 9

ZooKeeper Java Example

DataMonitor.javaDataMonitor.java

Copyright © The Apache Software Foundation. All rights reserved. Page 10

ZooKeeper Java Example

Copyright © The Apache Software Foundation. All rights reserved. Page 11

ZooKeeper Java Example

Copyright © The Apache Software Foundation. All rights reserved. Page 12

	Table of contents
	1 A Simple Watch Client
	1.1 Requirements
	1.2 Program Design

	2 The Executor Class
	3 The DataMonitor Class
	4 Complete Source Listings

