Programming with ZooKeeper - A basic
tutorial

by
Table of contents

O 1o L1 o o o VSRS OSRS 2
2 BaAITIEIS ..ottt e e e e et e e e e te e e e be e e e beeeaabeeeaabeeeaareeeabaeeeaeeeereeens 3
3 Producer-Consumer QUEUES............ueeeiuieeeiieeeiieeeeireeesireeesseeesssesssssesssssessaseeesasesesasesssnseeaas 5

4 COMPIEte SOUICE LISHING......ccveiueeiteeieciiesti et sttt sttt e sneesreenreeneesneeneas 7

Programming with ZooKeeper - A basic tutorial

1. Introduction

In thistutorial, we show simple implementations of barriers and producer-consumer queues
using ZooK eeper. We call the respective classes Barrier and Queue. These examples assume
that you have at |east one ZooK eeper server running.

Both primitives use the following common excerpt of code:

Both classes extend SyncPrimitive. In this way, we execute steps that are common to all
primitives in the constructor of SyncPrimitive. To keep the examples simple, we create a
ZooK eeper object the first time we instantiate either a barrier object or a queue object, and
we declare a static variable that is areference to this object. The subsequent instances of
Barrier and Queue check whether a ZooK eeper object exists. Alternatively, we could have
the application creating a ZooK eeper object and passing it to the constructor of Barrier and
Queue.

We use the process() method to process notifications triggered due to watches. In the
following discussion, we present code that sets watches. A watch isinternal structure that
enables ZooK eeper to notify aclient of achange to anode. For example, if aclient iswaiting
for other clientsto leave a barrier, then it can set awatch and wait for modificationsto a
particular node, which can indicate that it is the end of the wait. This point becomes clear
once we go over the examples.

Page 2

Programming with ZooKeeper - A basic tutorial

2.Barriers

A barrier isaprimitive that enables a group of processes to synchronize the beginning and
the end of a computation. The general idea of thisimplementation is to have a barrier node
that serves the purpose of being a parent for individual process nodes. Suppose that we call
the barrier node "/b1". Each process"p" then creates a node "/b1/p". Once enough processes
have created their corresponding nodes, joined processes can start the computation.

In this example, each process instantiates a Barrier object, and its constructor takes as
parameters:

« theaddress of aZooKeeper server (e.g., "zool.foo.com:2181")

» the path of the barrier node on ZooK eeper (e.g., "/b1")

« thesize of the group of processes

The constructor of Barrier passes the address of the Zookeeper server to the constructor of
the parent class. The parent class creates a ZooK eeper instance if one does not exist. The
constructor of Barrier then creates a barrier node on ZooK eeper, which is the parent node of
all process nodes, and we call root (Note: Thisis not the ZooK eeper root "/").

Page 3

Programming with ZooKeeper - A basic tutorial

To enter the barrier, aprocess calls enter(). The process creates a node under the root to
represent it, using its host name to form the node name. It then wait until enough processes
have entered the barrier. A process does it by checking the number of children the root node
has with "getChildren()", and waiting for notifications in the case it does not have enough.
To receive a notification when there is a change to the root node, a process has to set awatch,
and does it through the call to "getChildren()". In the code, we have that "getChildren()" has
two parameters. The first one states the node to read from, and the second is a boolean flag
that enables the process to set awatch. In the code the flag istrue.

Note that enter() throws both KeeperException and InterruptedException, so it isthe
reponsability of the application to catch and handle such exceptions.

Once the computation is finished, a process cals leave() to leave the barrier. First it deletes
its corresponding node, and then it gets the children of the root node. If thereis at least one

Page 4

Programming with ZooKeeper - A basic tutorial

child, then it waits for a notification (obs: note that the second parameter of the call to
getChildren() is true, meaning that ZooK eeper has to set awatch on the the root node). Upon
reception of a notification, it checks once more whether the root node has any child.

3. Producer-Consumer Queues

A producer-consumer queue is a distributed data estructure thata group of processes useto
generate and consume items. Producer processes create new elements and add them to the
gueue. Consumer processes remove elements from the list, and process them. In this
implementation, the elements are simple integers. The queue is represented by a root node,
and to add an element to the queue, a producer process creates a new node, a child of the root
node.

The following excerpt of code corresponds to the constructor of the object. Aswith Barrier
objects, it first calls the constructor of the parent class, SyncPrimitive, that creates a

ZooK eeper object if one doesn't exist. It then verifiesif the root node of the queue exists, and
createsif it doesn't.

Page 5

Programming with ZooKeeper - A basic tutorial

A producer process calls "produce()" to add an element to the queue, and passes an integer as
an argument. To add an element to the queue, the method creates a new node using
"create()", and uses the SEQUENCE flag to instruct ZooK eeper to append the value of the
sequencer counter associated to the root node. In thisway, we impose atotal order on the
elements of the queue, thus guaranteeing that the oldest element of the queue is the next one
consumed.

To consume an element, a consumer process obtains the children of the root node, reads the
node with smallest counter value, and returns the element. Note that if there is a conflict, then
one of the two contending processes won't be able to delete the node and the del ete operation

Page 6

Programming with ZooKeeper - A basic tutorial

will throw an exception.

A call to getChildren() returnsthe list of children in lexicographic order. As lexicographic
order does not necessary follow the numerical order of the counter values, we need to decide
which element is the smallest. To decide which one has the smallest counter value, we
traverse the list, and remove the prefix "element” from each one.

4. Complete Source Listing

Page 7
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Programming with ZooKeeper - A basic tutorial

SyncPrimitive.JavaSyncPrimitive.Java

Page 8
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Programming with ZooKeeper - A basic tutorial

Page 9
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Programming with ZooKeeper - A basic tutorial

Page 10
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Programming with ZooKeeper - A basic tutorial

Page 11
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Programming with ZooKeeper - A basic tutorial

Page 12
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Programming with ZooKeeper - A basic tutorial

Page 13
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Programming with ZooKeeper - A basic tutorial

Page 14
Copyright © 2008 The Apache Software Foundation. All rights reserved.

	1 Introduction
	2 Barriers
	3 Producer-Consumer Queues
	4 Complete Source Listing

