
by

Table of contents

1 The ZooKeeper Data Model.. 2

1.1 ZNodes.. 3

1.2 Time in ZooKeeper..4

1.3 ZooKeeper Stat Structure.. 5

2 ZooKeeper Sessions...5

3 ZooKeeper Watches...6

3.1 What ZooKeeper Guarantees about Watches..7

3.2 Things to Remember about Watches...7

4 Consistency Guarantees... 7

5 Bindings... 9

5.1 Java Binding.. 9

5.2 C Binding...10

6 Building Blocks: A Guide to ZooKeeper Operations.. 12

7 Program Structure, with Simple Example..12

8 Gotchas: Common Problems and Troubleshooting... 12

Copyright © 2008 The Apache Software Foundation. All rights reserved.

Developing Distributed Applications that use ZooKeeper
This document is a guide for developers wishing to create distributed applications that take
advantage of ZooKeeper's coordination services. It contains conceptual and practical
information.

The first four chapters of this guide present higher level discussions of various ZooKeeper
concepts. These are necessary both for an understanding of how Zookeeper works as well
how to work with it. It does not contain source code, but it does assume a familiarity with the
problems associated with distributed computing. The chapters in this first group are:

• The ZooKeeper Data Model

• ZooKeeper Sessions

• ZooKeeper Watches

• Consistency Guarantees

The next four chapters of this provided practical programming information. These are:

• Building Blocks: A Guide to ZooKeeper Operations

• Bindings

• Program Structure, with Simple Example [tbd]

• Gotchas: Common Problems and Troubleshooting

The book concludes with an appendix containing links to other useful, ZooKeeper-related
information.

Most of information in this document is written to be accessible as stand-alone reference
material. However, before starting your first ZooKeeper application, you should probably at
least read the chaptes on the ZooKeeper Data Model and ZooKeeper Basic Operations. Also,
the Simple Programmming Example [tbd] is helpful for understand the basic structure of a
ZooKeeper client application.

1. The ZooKeeper Data Model

ZooKeeper has a hierarchal name space, much like a distributed file system. The only
difference is that each node in the namespace can have data associated with it as well as
children. It is like having a file system that allows a file to also be a directory. Paths to nodes
are always expressed as canonical, absolute, slash-separated paths; there are no relative
reference. Any unicode character can be used in a path subject to the following constraints:

• The null character (\u0000) cannot be part of a path name. (This causes problems with the
C binding.)

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

• The following characters can't be used because they don't display well, or render in
confusing ways: \u0001 - \u0019 and \u007F - \u009F.

• The following characters are not allowed: \ud800 -uF8FFF, \uFFF0-uFFFF, \uXFFFE -
\uXFFFF (where X is an digit 1 - E), \uF0000 - \uFFFFF.

• The "." character can be used as part of another name, but "." and ".." cannot alone make
up the whole name of a path location, because ZooKeeper doesn't use relative paths. The
following would be invalid: "/a/b/./c" or "/a/b/../c".

• The token "zookeeper" is reserved.

1.1. ZNodes

Every node in a ZooKeeper tree is refered to as a znode. Znodes maintain a stat structure that
includes version numbers for data changes, acl changes. The stat structure also has
timestamps. The version number, together with the timestamp allow ZooKeeper to validate
the cache and to coordinate updates. Each time a znode's data changes, the version number
increases. For instance, whenever a client retrieves data, it also receives the version of the
data. And when a client performs an update or a delete, it must supply the version of the data
of the znode it is changing. If the version it supplies doesn't match the actual version of the
data, the update will fail. (This behavior can be overridden. For more information see...
)[tbd...]

Note:

In distributed application engineering, the word node can refer to a generic host machine, a server, a member of quorums, a
client process, etc. In the ZooKeeper documentatin, znodes refer to the data nodes. Servers to refer to machines that make up
the ZooKeeper service; quorum peers refer to the servers that make up a quorum; client refers to any host or process which
uses a ZooKeeper service.

Znodes are the main enitity that a programmer access. They have several characteristics that
are worth mentioning here.

1.1.1. Watches

Clients can set watches on znodes. Changes to that znode trigger the watch and then clear the
watch. When a watch triggers, ZooKeeper sends the client a notification. More information
about watches can be found in the section Zookeeper Watches. [tbd]

1.1.2. Data Access

The data stored at each znode in a namespace is read and written atomically. Reads get all the
data bytes associated with a znode and a write replaces all the data. Each node has an Access

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Control List (ACL) that restricts who can do what.

1.1.3. Ephemeral Nodes

ZooKeeper also has the notion of ephemeral nodes. These znodes exists as long as the
session that created the znode is active. When the session ends the znode is deleted. Because
of this behavior ephemeral znodes are not allowed to have children.

1.1.4. Unique Naming

Finally you create a znode, you can request that ZooKeeper append a monotonicly increasing
counter be appended to the path name of the znode to be requested. This counter is unique to
the parent znode.

1.2. Time in ZooKeeper

ZooKeeper tracks time multiple ways:

• Zxid

Every change to the ZooKeeper state receives a stamp in the form of a zxid (ZooKeeper
Transaction Id). This exposes the total ordering of all changes to ZooKeeper. Each
change will have a unique zxid and if zxid1 is smaller than zxid2 then zxid1 happened
before zxid2.

• Version numbers

Every change to a a node will cause an increase to one of the version numbers of that
node. The three version numbers are version (number of changes to the data of a znode),
cversion (number of changes to the children of a znode), and aversion (number of
changes to the ACL of a znode).

• Ticks

When using multi-server ZooKeeper, servers use ticks to define timing of events such as
status uploads, session timeouts, connection timeouts between peers, etc. The tick time is
only indirectly exposed through the minimum session timeout (2 times the tick time); if a
client requests a session timeout less than the minimum session timeout, the server will
tell the client that the session timeout is actually the minimum session timeout.

• Real time

ZooKeeper doesn't use real time, or clock time, at all except to put timestamps into the
stat structure on znode creation and znode modification.

Page 4
Copyright © 2008 The Apache Software Foundation. All rights reserved.

1.3. ZooKeeper Stat Structure

The Stat structure for each znode in ZooKeeper is made up of the following fields:

• czxid

The zxid of the change that caused this znode to be created.

• mzxid

The zxid of the change that last modified this znode.

• ctime

The time in milliseconds from epoch when this znode was created.

• mtime

The time in milliseconds from epoch when this znode was last modified.

• version

The number of changes to the data of this znode.

• cversion

The number of changes to the children of this znode.

• aversion

The number of changes to the ACL of this znode.

• ephemeralOwner

The session id of the owner of this znode if the znode is an ephemeral node. If it is not an
ephemeral node, it will be zero.

2. ZooKeeper Sessions

When a client gets a handle to the ZooKeeper service, ZooKeeper creates a ZooKeeper
session, represented as a 64-bit number, that it assigns to the client. If the client connects to a
different ZooKeeper server, it will send the session id as a part of the connection handshake.
As a security measure, the server creates a password for the session id that any ZooKeeper
server can validate.The password is sent to the client with the session id when the client
establishes the session. The client sends this password with the session id whenever it
reestablishes the session with a new server.

One of the parameters to the ZooKeeper client library call to create a ZooKeeper session is

Page 5
Copyright © 2008 The Apache Software Foundation. All rights reserved.

the session timeout in milliseconds. The client sends a requested timeout, the server responds
with the timeout that it can give the client. The current implementation requires that the
timeout be between 2 times the tickTime (as set in the server configuration) and 60 seconds.

The session is kept alive by requests sent by the client. If the session is idle for a period of
time that would timeout the session, the client will send a PING request to keep the session
alive. This PING request not only allows the ZooKeeper server to know that the client is still
active, but it also allows the client to verify that its connection to the ZooKeeper server is still
active. The timing of the PING is conservative enough to ensure reasonable time to detect a
dead connection and reconnect to a new server.

3. ZooKeeper Watches

All of the read operations in ZooKeeper - getData(), getChildren(), and exists() - have the
option of setting a watch as a side effect. Here is ZooKeeper's definition of a watch: a watch
event is one-time trigger, sent to the client that set the watch, which occurs when the data for
which the watch was set changes. There are three key points to consider in this definition of a
watch:

• One-time trigger

One watch event will be sent to the client the data has changed. For example, if a client
does a getData("/znode1", true) and later the data for /znode1 is changed or deleted, the
client will get a watch event for /znode1. If /znode1 changes again, no watch event will
be sent unless the client has done another read that sets a new watch.

• Sent to the client

This implies that an event is on the way to the client, but may not reach the client before
the successful return code to the change operation reaches the client that initiated the
change. Watches are sent asynchronously to watchers. ZooKeeper provides an ordering
guarantee: a client will never see a change for which it has set a watch until it first sees
the watch event. Network delays or other factors may cause different clients to see
watches and return codes from updates at different times. The key point is that everything
seen by the different clients will have a consistent order.

• The data for which the watch was set

This refers to the different ways a node can change. ZooKeeper maintains two lists of
watches: data watches and child watches. getData() and exists() set data watches.
getChildren() sets child watches. Thus, setData() will trigger data watches for the znode
being set (assuming the set is successful). A successful create() will trigger a data watch
for the znode being created and a child watch for the parent znode. A successful delete()
will trigger both a data watch and a child watch (since there can be no more children) for

Page 6
Copyright © 2008 The Apache Software Foundation. All rights reserved.

a znode being deleted as well as a child watch for the parent znode.

Watches are maintained locally at the ZooKeeper server to which the client is connected.
This allows watches to be light weight to set, maintain, and dispatch. It also means if a client
connects to a different server, the new server is not going to know about its watches. So,
when a client gets a disconnect event, it must consider that an implicit trigger of all watches.
When a client reconnects to a new server, the client should re-set any watches that it is still
interested in.

3.1. What ZooKeeper Guarantees about Watches

With regard to watches, ZooKeeper maintains these guarantees:

• Watches are ordered with respect to other events, other watches, and asynchronous
replies. The ZooKeeper client libraries ensures that everything is dispatched in order.

• A client will see a watch event for a znode it is watching before seeing the new data that
corresponds to that znode.

• The order of watch events from ZooKeeper corresponds to the order of the updates as
seen by the ZooKeeper service.

3.2. Things to Remember about Watches
• Watches are one time triggers; if you get a watch event and you want to get notified of

future changes, you must set another watch.

• Because watches are one time triggers and there is latency between getting the event and
sending a new request to get a watch you cannot reliably see every change that happens
to a node in ZooKeeper. Be prepared to handle the case where the znode changes
multiple times between getting the event and setting the watch again. (You may not care,
but at least realize it may happen.)

• When you disconnect from a server (for example, when the server fails), all of the
watches you have registered are lost, so you should treat this case as if all your watches
were triggered.

4. Consistency Guarantees

ZooKeeper is a high performance, scalable service. Both reads and write operations are
designed to be fast, though reads are faster than writes. The reason for this is that in the case

Page 7
Copyright © 2008 The Apache Software Foundation. All rights reserved.

of reads, ZooKeeper can serve older data, which in turn is due to ZooKeeper's consistency
guarantees:

Sequential Consistency
Updates from a client will be applied in the order that they were sent.

Atomicity
Updates either succeed or fail -- there are no partial results.

Single System Image
A client will see the same view of the service regardless of the server that it connects to.

Reliability
Once an update has been applied, it will persist from that time forward until a client
overwrites the update. This guarantee has two corollaries:

1. If a client gets a successful return code, the update will have been applied. On some
failures (communication errors, timeouts, etc) the client will not know if the update
has applied or not. We take steps to minimize the failures, but the only guarantee is
only present with successful return codes. (This is called the _monotonicity
condition_ in Paxos.)

2. Any updates that are seen by the client, through a read request or successful update,
will never be rolled back when recovering from server failures.

Timeliness
The clients view of the system is guaranteed to be up-to-date within a certain time bound.
(On the order of tens of seconds.) Either system changes will be seen by a client within
this bound, or the client will detect a service outage.

Using these consistency guarantees it is easy to build higher level functions such as leader
election, barriers, queues, and read/write revocable locks solely at the ZooKeeper client (no
additions needed to ZooKeeper). See Recipes and Solutions for more details.

Note:

Sometimes developers mistakenly assume one other guarantee that Zookeeper does not in fact make. This is:

Simultaneously Conistent Cross-Client Views

ZooKeeper does not guarantee that at every instance in time, two different clients will have identical views of ZooKeeper
data. Due to factors like network delays, one client may perform an update before another client gets notified of the
change. Consider the scenario of two clients, A and B. If client A sets the value of a znode /a from 0 to 1, then tells client
B to read /a, client B may read the old value of 0, depending on which server in the ZooKeeper quorum it is connected to.
If it is important that Client A and Client B read the same value, Client B should should call the sync() method from the
ZooKeeper API method before it performs its read.

So, ZooKeeper by itself doesn't guarantee instantaneous, atomic, synchronization across its quorum, but ZooKeeper
primitives can be used to construct higher level functions that provide complete client synchronization. (For more

Page 8
Copyright © 2008 The Apache Software Foundation. All rights reserved.

recipes.html

information, see the Locks [tbd:...] in Zookeeper Recipes. [tbd:..]).

5. Bindings

The ZooKeeper client libraries come in two languages: Java and C. The following sections
describe these.

5.1. Java Binding

There are two packages that make up the ZooKeeper Java binding: org.apache.zookeeper
and org.apache.zookeeper.data. The rest of the packages that make up ZooKeeper are used
internally or are part of the server implementation. The org.apache.zookeeper.data package
is made up of generated classes that are used simply as containers.

The main class used by a ZooKeeper Java client is the ZooKeeper class. Its two constructors
differ only by an optional session id and password. ZooKeeper supports session recovery
accross instances of a process. A Java program may save its session id and password to stable
storage, restart, and recover the session that was used by the earlier instance of the program.

When a ZooKeeper object is created, two threads are created as well: an IO thread and an
event thread. All IO happens on the IO thread (using Java NIO). All event callbacks happen
on the event thread. Session maintenance such as reconnecting to ZooKeeper servers and
maintaining heartbeat is done on the IO thread. Responses for synchronous methods are also
processed in the IO thread. All responses to asynchronous methods and watch events are
processed on the event thread. There are a few things to notice that result from this design:

• All completions for asynchronous calls and watcher callbacks will be made in order, one
at a time. The caller can do any processing they wish, but no other callbacks will be
processed during that time.

• Callbacks do not block the processing of the IO thread or the processing of the
synchronous calls.

• Synchronous calls may not return in the correct order. For example, assume a client does
the following processing: issues an asynchronous read of node /a with watch set to true,
and then in the completion callback of the read it does a synchronous read of /a. (Maybe
not good practice, but not illegal either, and it makes for a simple example.)

Note that if there is a change to /a between the asynchronous read and the synchronous
read, the client library will receive the watch event saying /a changed before the response
for the synchronous read, but because the completion callback is blocking the event
queue, the synchronous read will return with the new value of /a before the watch event

Page 9
Copyright © 2008 The Apache Software Foundation. All rights reserved.

recipes.html#sc_recipes_Locks
recipes.html

is processed.

Finally, the rules associated with shutdown are straightforward: once a ZooKeeper object is
closed or receives a fatal event (SESSION_EXPIRED and AUTH_FAILED), the ZooKeeper
object becomes invalid, the two threads shut down, and any further ZooKeeper calls throw
errors.

5.2. C Binding

The C binding has a single-threaded and multi-threaded library. The multi-threaded library is
easiest to use and is most similar to the Java API. This library will create an IO thread and an
event dispatch thread for handling connection maintenance and callbacks. The
single-threaded library allows ZooKeeper to be used in event driven applications by exposing
the event loop used in the multi-threaded library.

The package includes two shared libraries: zookeeper_st and zookeeper_mt. The former only
provides the asynchronous APIs and callbacks for integrating into the application's event
loop. The only reason this library exists is to support the platforms were a pthread library is
not available or is unstable (i.e. FreeBSD 4.x). In all other cases, application developers
should link with zookeeper_mt, as it includes support for both Sync and Async API.

5.2.1. Installation

If you're building the client from a check-out from the Apache repository, follow the steps
outlined below. If you're building from a project source package downloaded from apache,
skip to step 3.

1. Run ant compile_just from the zookeeper top level directory
(.../trunk/zookeeper). This will create a directory named "generated" under
zookeeper/c.

2. Change directory to thezookeeper/c and run autoreconf -i to bootstrap
autoconf, automake and libtool. Make sure you have autoconf version 2.59 or greater
installed. Skip to step 4.

3. If you are building from a project source package, unzip/untar the source tarball and cd to
the zookeeper-x.x.x/ directory.

4. Run ./configure <your-options> to generate the makefile. Here are some of
options the configure utility supports that can be useful in this step:

• --enable-debug

Enables optimization and enables debug info compiler options. (Disabled by default.)

• --without-syncapi

Page 10
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Disables Sync API support; zookeeper_mt library won't be built. (Enabled by
default.)

• --disable-static

Do not build static libraries. (Enabled by default.)

• --disable-shared

Do not build shared libraries. (Enabled by default.)

Note:
See INSTALL for general information about running configure.

5. Run make or make install to build the libraries and install them.

6. To generate doxygen documentation for the ZooKeeper API, run make
doxygen-doc. All documentation will be placed in a new subfolder named docs. By
default, this command only generates HTML. For information on other document
formats, run ./configure --help

5.2.2. Using the Client

You can test your client by running a zookeeper server (see instructions on the project wiki
page on how to run it) and connecting to it using one of the cli applications that were built as
part of the installation procedure. cli_mt (multithreaded, built against zookeeper_mt library)
is shown in this example, but you could also use cli_st (singlethreaded, built against
zookeeper_st library):

$ cli_mt zookeeper_host:9876
This is a client application that gives you a shell for executing simple zookeeper commands.
Once succesully started and connected to the server it displays a shell prompt. You can now
enter zookeeper commands. For example, to create a node:
> create /my_new_node

To verify that the node's been created:

You should see a list of node who are children of the root node "/".

In order to be able to use the ZooKeeper API in your application you have to remember to

1. Include zookeeper header: #include <zookeeper/zookeeper.h

2. If you are building a multithreaded client, compile with -DTHREADED compiler flag to
enable the multi-threaded version of the library, and then link against against the
zookeeper_mt library. If you are building a single-threaded client, do not compile

Page 11
Copyright © 2008 The Apache Software Foundation. All rights reserved.

with -DTHREADED, and be sure to link against the zookeeper_st library.

Refer to Program Structure, with Simple Examplefor examples of usage in Java and C. [tbd]

6. Building Blocks: A Guide to ZooKeeper Operations

[tbd: This is a new section. The below is just placeholder. Eventually, a subsection on each of
those operations, with a little bit of illustrative code for each op.]

One of the design goals of ZooKeeper is provide a very simple programming interface. As a
result, it supports only these operations:

create
creates a node at a location in the tree

delete
deletes a node

exists
tests if a node exists at a location

get data
reads the data from a node

set data
writes data to a node

get children
retrieves a list of children of a node

sync
waits for data to be propagated.

7. Program Structure, with Simple Example

[tbd]

8. Gotchas: Common Problems and Troubleshooting

So now you know ZooKeeper. It's fast, simple, your application works, but wait ...
something's wrong. Here are some pitfalls that ZooKeeper users fall into:

1. If you are using watches, you must look for the connected watch event. When a
ZooKeeper client disconnects from a server, all the watches are removed, so a client must
treat the disconnect event as an implicit trigger of watches. The easiest way to deal with

Page 12
Copyright © 2008 The Apache Software Foundation. All rights reserved.

this is to act like the connected watch event is a watch trigger for all your watches. The
connected event makes a better trigger than the disconnected event because you can
access ZooKeeper and reestablish watches when you are connected.

2. You must test ZooKeeper server failures. The ZooKeeper service can survive failures as
long as a majority of servers are active. The question to ask is: can your application
handle it? In the real world a client's connection to ZooKeeper can break. (ZooKeeper
server failures and network partitions are common reasons for connection loss.) The
ZooKeeper client library takes care of recovering your connection and letting you know
what happened, but you must make sure that you recover your state and any outstanding
requests that failed. Find out if you got it right in the test lab, not in production - test with
a ZooKeeper service made up of a several of servers and subject them to reboots.

3. The list of ZooKeeper servers used by the client must match the list of ZooKeeper servers
that each ZooKeeper server has. Things can work, although not optimally, if the client list
is a subset of the real list of ZooKeeper servers, but not if the client lists ZooKeeper
servers not in the ZooKeeper cluster.

4. Be careful where you put that transaction log. The most performance-critical part of
ZooKeeper is the transaction log. ZooKeeper must sync transactions to media before it
returns a response. A dedicated transaction log device is key to consistent good
performance. Putting the log on a busy device will adversely effect performance. If you
only have one storage device, put trace files on NFS and increase the snapshotCount; it
doesn't eliminate the problem, but it can mitigate it.

5. Set your Java max heap size correctly. It is very important to avoid swapping. Going to
disk unnecessarily will almost certainly degrade your performance unacceptably.
Remember, in ZooKeeper, everything is ordered, so if one request hits the disk, all other
queued requests hit the disk.

To avoid swapping, try to set the heapsize to the amount of physical memory you have,
minus the amount needed by the OS and cache. The best way to determine an optimal
heap size for your configurations is to run load tests. If for some reason you can't, be
conservative in your estimates and choose a number well below the limit that would
cause your machine to swap. For example, on a 4G machine, a 3G heap is a conservative
estimate to start with.

Outside the formal documentation, there're several other sources of information for
ZooKeeper developers.

ZooKeeper Whitepaper [tbd: find url]
The definitive discussion of ZooKeeper design and performance, by Yahoo! Research

API Reference [tbd: find url]
The complete reference to the ZooKeeper API

Page 13
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Zookeeper Talk at the Hadoup Summit 2008
A video introduction to ZooKeeper, by Benjamin Reed of Yahoo! Research

Barrier and Queue Tutorial
The excellent Java tutorial by Flavio Junqueira, implementing simple barriers and
producer-consumer queues using ZooKeeper.

ZooKeeper - A Reliable, Scalable Distributed Coordination System
An article by Todd Hoff (07/15/2008)

Zookeeper Recipes
Pseudo-level discussion of the implementation of various synchronization solutions with
ZooKeeper: Event Handles, Queues, Locks, and Two-phase Commits.

[tbd]
Any other good sources anyone can think of...

Page 14
Copyright © 2008 The Apache Software Foundation. All rights reserved.

http://us.dl1.yimg.com/download.yahoo.com/dl/ydn/zookeeper.m4v
http://wiki.apache.org/hadoop/ZooKeeper/Tutorial
http://wiki.apache.org/hadoop/ZooKeeper/ZooKeeperArticles
recipes.html

	1 The ZooKeeper Data Model
	1.1 ZNodes
	1.1.1 Watches
	1.1.2 Data Access
	1.1.3 Ephemeral Nodes
	1.1.4 Unique Naming

	1.2 Time in ZooKeeper
	1.3 ZooKeeper Stat Structure

	2 ZooKeeper Sessions
	3 ZooKeeper Watches
	3.1 What ZooKeeper Guarantees about Watches
	3.2 Things to Remember about Watches

	4 Consistency Guarantees
	5 Bindings
	5.1 Java Binding
	5.2 C Binding
	5.2.1 Installation
	5.2.2 Using the Client

	6 Building Blocks: A Guide to ZooKeeper Operations
	7 Program Structure, with Simple Example
	8 Gotchas: Common Problems and Troubleshooting

