BookKeeper Getting Started Guide

by

Table of contents

1 Programming With BOOKK EEPEN ..........couiiiiieie e 2
1.1 Instantiating BOOKK EEPE ..........oiiieiie ettt neas 2
1.2 Creating @ lEAQEL. ...ooeeceeceee et e 2
1.3 Adding entrieS 10 @ l@AQEY. .....occeieeiece e 3
1.4 ClOSING @ TEAGES. ...t b e 4
1.5 OPENING 8 TEAGEY. ..o sr b 5
1.6 Reading from [EAQEN ........cooiiiee e 6

(A D= 1= 1o = T L= o T PSR 6




BookKeeper Getting Started Guide

1 Programming with BookKeeper

* |nstantiating BookK eeper.
» Creating aledger.

* Adding entriesto aledger.
» Closing aledger.

* Opening aledger.

» Reading from ledger

» Deeting aledger

1.1 Instantiating BookKeeper.

The first step to use BookK eeper isto instantiate a BookK eeper object:
or g. apache. bookkeeper . BookKeeper
There are three BookK eeper constructors:

publ i c BookKeeper (String servers) throws KeeperExcepti on,
| OException

where:
e servers isacomma-separated list of ZooK eeper servers.

publ i ¢ BookKeeper (ZooKeeper zk) throws |nterruptedException,
Keeper Excepti on

where;

» zk isaZooKeeper object. This constructor is useful when the application also using
ZooK eeper and wants to have a single instance of ZooK eeper.

publ i ¢ BookKeeper (ZooKeeper zk, dient Socket Channel Factory
channel Factory) throws InterruptedException, KeeperException

where:

» zk isaZooKeeper object. This constructor is useful when the application also using
ZooK eeper and wants to have a single instance of ZooK eeper.

* channel Fact ory isanetty channel object
(org.j boss. netty. channel . socket).

1.2 Creating a ledger.

Before writing entries to BookK eeper, it is necessary to create aledger. With the current
BookKeeper AP, it is possible to create aledger both synchronously or asynchronously. The
following methods belong to or g. apache. bookkeeper. cl i ent . BookKeeper .

Synchronous call:

Page 2



BookKeeper Getting Started Guide

publ i ¢ LedgerHandl e creat eLedger(int ensSize, int gSize,
Di gest Type type, byte passwd[]) throws Keeper Excepti on,
| nt errupt edExcepti on, | OException, BKException

where;

* ensSi ze isthe number of bookies (ensemble size);

* (Si ze isthe write quorum size;

* type isthetype of digest used with entries: either MAC or CRC32.

» passwd isapassword that authorizes the client to write to the ledger being created.

All further operations on aledger are invoked through the Ledger Handl e object returned.

Asaconvenience, we provideacr eat eLedger with default parameters
(3,2 VERIFIABLE), and the only two input parametersit requires are adigest type and a
password.

Asynchronous call:

public void asyncCreatelLedger(int ensSize, int gSi ze,
Di gest Type type, byte passwd[], CreateCall back cb, Object
ctx )

The parameters are the same of the synchronous version, with the

exception of cb and ct x. Cr eat eCal | back isaninterfacein

or g. apache. bookkeeper. cl i ent. AsyncCal | back, and aclassimplementing it
has to implement a method called cr eat eConpl et e that has the following signature:

voi d createConplete(int rc, LedgerHandle I h, Object ctx);
where:

e rc isareturn code (pleaserefer to
or g. apache. bookeeper. cli ent. BKExcept i on for alist);

* | hisalLedger Handl e object to manipulate aledger;

» ct x isacontrol object for accountability purposes. It can be essentially any object the
application is happy with.

The ct x object passed as a parameter to the call to create aledger is the one same returned
in the callback.

1.3 Adding entries to a ledger.

Once we have aledger handle| h obtained through a call to create aledger,
we can start writing entries. As with creating ledgers, we can write both
synchronously and asynchronously. The following methods belong to

or g. apache. bookkeeper. cli ent. Ledger Handl e.

Synchronous call:

Page 3



BookKeeper Getting Started Guide

public | ong addEntry(byte[] data) throws |nterruptedException
where:
» dat aisabytearray;

A call toaddEnt r y returns the status of the operation (please refer to
or g. apache. bookeeper. cl i ent. BKDef s for alist);

Asynchronous call:

public void asyncAddEntry(byte[] data, AddCall back cb, bject
ct x)

It also takes a byte array as the sequence of bytesto be stored as an entry. Additionaly, it
takes a callback object cb and a control object ct x. The callback object must implement the
AddcCal | back interfaceinor g. apache. bookkeeper. cli ent. AsyncCal | back,
and a class implementing it has to implement a method called addConpl et e that has the
following signature:

voi d addConpl ete(int rc, LedgerHandle Ih, long entryld, bject
ctx);

where;

» rcisareturn code (pleaserefer toor g. apache. bookeeper. cl i ent. BKDef s for
alist);

* | hisalLedger Handl e object to manipulate a ledger;

* entryldistheidentifier of entry associated with this request;

» ct x iscontrol object used for accountability purposes. It can be any object the
application is happy with.

1.4 Closing a ledger.

Once aclient is done writing, it closes the ledger. The following methods belong to
or g. apache. bookkeeper. cl i ent. Ledger Handl e.

Synchronous close:

public void close() throws InterruptedException

It takes no input parameters.

Asynchronous close:

public void asyncCd ose(d oseCal | back cb, Cbject ctx) throws
| nt er rupt edExcepti on

It takes a callback object cb and a control object ct x. The
callback object must implement the Cl oseCal | back interfacein

Page 4



BookKeeper Getting Started Guide

or g. apache. bookkeeper. cl i ent. AsyncCal | back, and aclassimplementing it
has to implement a method called cl oseConpl et e that has the following signature:

voi d cl oseConpl ete(int rc, LedgerHandl e |h, Object ctx)

where:
* rcisareturn code (pleaserefer toor g. apache. bookeeper. cl i ent . BKDef s for
alist);

| hisalLedger Handl e object to manipulate aledger;
* ct x iscontrol object used for accountability purposes.

1.5 Opening a ledger.

To read from aledger, a client must open it first. The following methods belong to
or g. apache. bookkeeper. cl i ent. BookKeeper.

Synchronous open:

publ i c LedgerHandl e openLedger(long |1d, DigestType type, byte
passwd[]) throws |nterruptedException, BKException

* | edger | distheledger identifier;

* type isthetype of digest used with entries: either MAC or CRC32.

» passwd isapassword to access the ledger (used only in the case of VERI FI ABLE
ledgers);

Asynchronous open:

public void asyncOpenLedger(long |1d, DigestType type, byte
passwd[], OpenCall back cb, Object ctx)

It also takes aaledger identifier and a password. Additionaly, it takes a callback object

cb and acontrol object ct x. The callback object must implement the OpenCal | back
interfacein or g. apache. bookkeeper. cli ent. AsyncCal | back, and aclass
implementing it has to implement a method called openConpl et e that has the following
signature:

public void openConpl ete(int rc, LedgerHandl e | h, Object ctx)
where:

* rcisareturn code (pleaserefer toor g. apache. bookeeper. cl i ent . BKDef s for
alist);

* | hisalLedger Handl e object to manipulate aledger;

» ctx iscontrol object used for accountability purposes.

Page 5



BookKeeper Getting Started Guide

1.6 Reading from ledger

Read calls may request one or more consecutive entries. The following methods belong to
or g. apache. bookkeeper. cli ent. Ledger Handl e.

Synchronous read:

publ i c Enunerati on<LedgerEntry> readEntries(long firstEntry,
long lastEntry) throws InterruptedException, BKException

 firstEntry istheidentifier of thefirst entry in the sequence of entries to read;
* | ast Entry istheidentifier of the last entry in the sequence of entries to read.

Asynchronous read:

public void asyncReadEntries(long firstEntry, |ong
| ast Entry, ReadCal | back cb, Object ctx) throws BKException,
| nt er rupt edExcepti on

It also takes afirst and alast entry identifiers. Additionaly, it takes a callback object cb and

acontrol object ct x. The callback object must implement the ReadCal | back interface in
or g. apache. bookkeeper. cl i ent. AsyncCal | back, and aclassimplementing it

has to implement a method called r eadConpl et e that has the following signature:

voi d readConpl ete(int rc, LedgerHandle |h,
Enuner ati on<Ledger Entry> seq, Object ctx)

where:
* rcisareturn code (pleaserefer toor g. apache. bookeeper. cl i ent . BKDef s for
alist);

* | hisalLedger Handl e object to manipulate aledger;

* seqisaEnunerati on<Ledger Entry> object to containing the list of entries
requested;

* ct x iscontrol object used for accountability purposes.

1.7 Deleting a ledger

Once aclient is done with aledger and is sure that nobody will ever need to
read from it again, they can delete the ledger. The following methods belong to
or g. apache. bookkeeper. cl i ent. BookKeeper .

Synchronous delete:

public void del eteLedger(long I1d) throws
| nt errupt edExcepti on, BKException

e | 1 distheledger identifier;
Asynchronous delete:

Page 6



BookKeeper Getting Started Guide

public void asyncDel etelLedger(long I1d, DeleteCallback cb,
bj ect ctx)

It takes aledger identifier. Additionally, it takes a callback object cb and a control
object ct x. The callback object must implement the Del et eCal | back interfacein

or g. apache. bookkeeper. cl i ent. AsyncCal | back, and aclassimplementing it
has to implement a method called del et eConpl et e that has the following signature:

voi d del eteConplete(int rc, Object ctx)

where:
* rcisareturn code (pleaserefer toor g. apache. bookeeper. cl i ent . BKDef s for
alist);

» ctx iscontrol object used for accountability purposes.

Page 7



	Table of contents
	1 Programming with BookKeeper
	1.1 Instantiating BookKeeper.
	1.2 Creating a ledger.
	1.3 Adding entries to a ledger.
	1.4 Closing a ledger.
	1.5 Opening a ledger.
	1.6 Reading from ledger
	1.7 Deleting a ledger


