BookKeeper Getting Started Guide

by
Table of contents

1 Programming With BOOKK EEPENccuiieeie ettt 2
1.1 Instantiating BOOKK EEDEccvviiieiieiicie ettt st nne s 2
1.2 Creating @ lEOGET. ..ot 2
1.3 Adding entrieST0 @lEAQES.c.oiirieeeere s 3
I O o= gTo I W L= (o= SRR 4
1.50PENING AIEAGEN. ...ooeiieeie e 5

1.6 Reading frOM IEAQEYoceiieeeee e et e ae s 6

BookKeeper Getting Started Guide

1. Programming with BookK eeper
e Instantiating BookK eeper.

» Creating aledger.

» Adding entriesto aledger.

e Closing aledger.

» Opening aledger.

» Reading from ledger

1.1. Instantiating BookK eeper.

The first step to use BookK egper isto instantiate a BookK eeper object:
or g. apache. bookkeeper . BookKeeper

There is one BookK eeper constructor:

publ i c BookKeeper (String servers) throws KeeperExcepti on,
| OException

whereser ver s isacomma-separated list of ZooK eeper servers.

1.2. Creating a ledger.

Before writing entries to BookK eeper, it is necessary to create aledger. With the current
BookKeeper AP, it is possible to create aledger both synchronously or asynchronously. The
following methods belong to or g. apache. bookkeeper. cl i ent . BookKeeper.

Synchronous call:

publ i ¢ LedgerHandl e creat eLedger(int ensSize, int gSize, Qvbde
node, byte passwd[]) throws Keeper Excepti on,
| nt errupt edExcepti on, | CException, BKException

where:
e ensSi ze isthe number of bookies (ensemble size);

e (Si ze isthewrite quorum size;

« node istheledger mode (QMode.GENERIC, QMode.VERIFIABLE). If node is
QMode.GENERIC, then ensSi ze hasto be at least 3t+1, and qSi ze hasto be 2t+1. t
is the maximum number of tolerated bookie failures.

Page 2

BookKeeper Getting Started Guide

+ passwd isapassword that authorizes the client to write to the ledger being created.

All further operations on aledger are invoked through the Ledger Handl e object returned.

Asaconvenience, we provideacr eat eLedger with default parameters
(3,2VERIFIABLE), and the only input parameter it requiresis a password.

Asynchronous call:

public void asyncCreatelLedger(int ensSize, int qSize, Qwde
node, byte passwd[], CreateCallback cb, Object ctx) throws
Keeper Exception, InterruptedException, |OException,
BKExcepti on

The parameters are the same of the synchronous version, with the exception of cb and ct x.
Creat eCal | back isaninterfacein

or g. apache. bookkeeper. client. AsyncCal | back, and aclassimplementing it
has to implement amethod called cr eat eConpl et e that has the following signature:

voi d createConplete(int rc, LedgerHandle I h, Qbject ctx);

where:

e rc isareturn code (pleaserefer toor g. apache. bookeeper. cl i ent . BKDef s for
alist);

« | hisalLedger Handl e object to manipulate aledger;

e ct x isacontrol object for accountability purposes;

The ct x object passed as a parameter to the call to create aledger is the one same returned
in the callback.
1.3. Adding entriesto a ledger.

Once we have aledger handle | h obtained through a call to create aledger, we can start
writing entries. As with creating ledgers, we can write both synchronously and
asynchronously. The following methods belong to

or g. apache. bookkeeper. cli ent. Ledger Handl e.

Synchronous call:
public long addEntry(byte[] data) throws |nterruptedException

where:
+ dat aisabytearray,;

Page 3

BookKeeper Getting Started Guide

A call to addEnt r y returns the status of the operation ((please refer to
or g. apache. bookeeper. cl i ent. BKDef s for alist);

Asynchronous call:

public void asyncAddEntry(byte[] data, AddCall back cb, bject
ctx) throws InterruptedException

It also takes a byte array as the sequence of bytesto be stored as an entry. Additionaly, it
takes a callback object cb and a control object ct x. The callback object must implement the
AddCal | back interfaceinor g. apache. bookkeeper. cli ent. AsyncCal | back,
and a class implementing it has to implement a method called addConpl et e that has the
following signature:

voi d addConpl ete(int rc, LedgerHandl e Ih, long entryld, bject
ctx);

where:

e rc isareturn code (pleaserefer toor g. apache. bookeeper. cl i ent . BKDef s for
alist);

« | hisalLedger Handl e object to manipulate a ledger;
« entryldistheidentifier of entry associated with this request;
e ctx iscontrol object used for accountability purposes.

1.4. Closing a ledger.

Once aclient is done writing, it closes the ledger. The following methods belong to
or g. apache. bookkeeper. cl i ent. Ledger Handl e.

Synchronous close:

public void close() throws KeeperException,
| nt er rupt edExcepti on

It takes no input parameters.
Asynchronous close:

public void asyncCd ose(d oseCal | back cb, Object ctx) throws
| nt er rupt edExcepti on

It takes a callback object cb and a control object ct x. The callback object must implement

Page 4

BookKeeper Getting Started Guide

theCl oseCal | back interfacein
or g. apache. bookkeeper. cl i ent. AsyncCal | back, and aclassimplementing it
has to implement a method called cl oseConpl et e that has the following signature:

voi d cl oseConpl ete(int rc, LedgerHandle |h, Object ctx)

where:

e rc isareturn code (pleaserefer toor g. apache. bookeeper. cl i ent . BKDef s for
alist);

| hisalLedger Handl e object to manipulate aledger;
e ct x iscontrol object used for accountability purposes.

1.5. Opening a ledger.

To read from aledger, aclient must open it first. The following methods belong to
or g. apache. bookkeeper. cl i ent. BookKeeper .

Synchronous open:

publ i c LedgerHandl e openLedger(long I1d, byte passwd[]) throws
Keeper Exception, |InterruptedException, |OException,
BKExcepti on

« | edger | distheledger identifier;

« passwd isapassword to access the ledger (used only in the case of VERI FI ABLE
ledgers);

Asynchronous open:

public void asyncOpenLedger(long I 1d, byte passwd[],
OpenCal | back cb, Object ctx) throws |InterruptedException

It also takes a aledger identifier and a password. Additionaly, it takes a callback object cb
and a control object ct x. The callback object must implement the OpenCal | back
interfacein or g. apache. bookkeeper. cli ent. AsyncCal | back, and aclass
implementing it has to implement a method called openConpl et e that has the following
signature:

public void openConplete(int rc, LedgerHandl e | h, Cbject ctx)

where:
e rc isareturn code (pleaserefer toor g. apache. bookeeper. cl i ent . BKDef s for

Page 5

BookKeeper Getting Started Guide

alist);
« | hisalLedger Handl e object to manipulate aledger;
« ct x iscontrol object used for accountability purposes.

1.6. Reading from ledger

Read calls may request one or more consecutive entries. The following methods belong to
or g. apache. bookkeeper. cli ent. Ledger Handl e.

Synchronousread:

publ i ¢ Ledger Sequence readEntries(long firstEntry, |ong

| astEntry) throws InterruptedException, BKException

« firstEntry istheidentifier of thefirst entry in the sequence of entries to read;
« | ast Entry istheidentifier of the last entry in the sequence of entries to read;

Asynchronousread:

public void asyncReadEntries(long firstEntry, long | astEntry,
ReadCal | back cb, Object ctx) throws BKException,
| nt errupt edExcepti on

It also takes afirst and alast entry identifiers. Additionaly, it takes a callback object cb and a
control object ct x. The callback object must implement the ReadCal | back interfacein
or g. apache. bookkeeper. cl i ent. AsyncCal | back, and aclassimplementing it
has to implement a method called r eadConpl et e that has the following signature:

voi d readConpl ete(int rc, LedgerHandl e | h, Ledger Sequence seq,
hj ect ctx)
where:

e rc isareturn code (pleaserefer toor g. apache. bookeeper. cl i ent . BKDef s for
alist);

« | hisalLedger Handl e object to manipulate a ledger;

« seqisaledger Sequence object to containing the list of entries requested;

e ctx iscontrol object used for accountability purposes.

Page 6

	1 Programming with BookKeeper
	1.1 Instantiating BookKeeper.
	1.2 Creating a ledger.
	1.3 Adding entries to a ledger.
	1.4 Closing a ledger.
	1.5 Opening a ledger.
	1.6 Reading from ledger

