
BookKeeper Getting Started Guide

by

Table of contents

1 Programming with BookKeeper.. 2

1.1 Instantiating BookKeeper..2

1.2 Creating a ledger. ..2

1.3 Adding entries to a ledger. ..3

1.4 Closing a ledger. ...4

1.5 Opening a ledger. ..5

1.6 Reading from ledger ... 6

Copyright © 2008 The Apache Software Foundation. All rights reserved.

1. Programming with BookKeeper
• Instantiating BookKeeper.

• Creating a ledger.

• Adding entries to a ledger.

• Closing a ledger.

• Opening a ledger.

• Reading from ledger

1.1. Instantiating BookKeeper.

The first step to use BookKeeper is to instantiate a BookKeeper object:

org.apache.bookkeeper.BookKeeper

There is one BookKeeper constructor:

public BookKeeper(String servers) throws KeeperException,
IOException

where servers is a comma-separated list of ZooKeeper servers.

1.2. Creating a ledger.

Before writing entries to BookKeeper, it is necessary to create a ledger. With the current
BookKeeper API, it is possible to create a ledger both synchronously or asynchronously. The
following methods belong to org.apache.bookkeeper.client.BookKeeper.

Synchronous call:

public LedgerHandle createLedger(int ensSize, int qSize, QMode
mode, byte passwd[]) throws KeeperException,
InterruptedException, IOException, BKException

where:

• ensSize is the number of bookies (ensemble size);

• qSize is the write quorum size;

• mode is the ledger mode (QMode.GENERIC, QMode.VERIFIABLE). If mode is
QMode.GENERIC, then ensSize has to be at least 3t+1, and qSize has to be 2t+1. t
is the maximum number of tolerated bookie failures.

BookKeeper Getting Started Guide

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

• passwd is a password that authorizes the client to write to the ledger being created.

All further operations on a ledger are invoked through the LedgerHandle object returned.

As a convenience, we provide a createLedger with default parameters
(3,2,VERIFIABLE), and the only input parameter it requires is a password.

Asynchronous call:

public void asyncCreateLedger(int ensSize, int qSize, QMode
mode, byte passwd[], CreateCallback cb, Object ctx) throws
KeeperException, InterruptedException, IOException,
BKException

The parameters are the same of the synchronous version, with the exception of cb and ctx.
CreateCallback is an interface in
org.apache.bookkeeper.client.AsyncCallback, and a class implementing it
has to implement a method called createComplete that has the following signature:

void createComplete(int rc, LedgerHandle lh, Object ctx);

where:

• rc is a return code (please refer to org.apache.bookeeper.client.BKDefs for
a list);

• lh is a LedgerHandle object to manipulate a ledger;

• ctx is a control object for accountability purposes;

The ctx object passed as a parameter to the call to create a ledger is the one same returned
in the callback.

1.3. Adding entries to a ledger.

Once we have a ledger handle lh obtained through a call to create a ledger, we can start
writing entries. As with creating ledgers, we can write both synchronously and
asynchronously. The following methods belong to
org.apache.bookkeeper.client.LedgerHandle.

Synchronous call:

public long addEntry(byte[] data) throws InterruptedException

where:

• data is a byte array;

BookKeeper Getting Started Guide

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

A call to addEntry returns the status of the operation ((please refer to
org.apache.bookeeper.client.BKDefs for a list);

Asynchronous call:

public void asyncAddEntry(byte[] data, AddCallback cb, Object
ctx) throws InterruptedException

It also takes a byte array as the sequence of bytes to be stored as an entry. Additionaly, it
takes a callback object cb and a control object ctx. The callback object must implement the
AddCallback interface in org.apache.bookkeeper.client.AsyncCallback,
and a class implementing it has to implement a method called addComplete that has the
following signature:

void addComplete(int rc, LedgerHandle lh, long entryId, Object
ctx);

where:

• rc is a return code (please refer to org.apache.bookeeper.client.BKDefs for
a list);

• lh is a LedgerHandle object to manipulate a ledger;

• entryId is the identifier of entry associated with this request;

• ctx is control object used for accountability purposes.

1.4. Closing a ledger.

Once a client is done writing, it closes the ledger. The following methods belong to
org.apache.bookkeeper.client.LedgerHandle.

Synchronous close:

public void close() throws KeeperException,
InterruptedException

It takes no input parameters.

Asynchronous close:

public void asyncClose(CloseCallback cb, Object ctx) throws
InterruptedException

It takes a callback object cb and a control object ctx. The callback object must implement

BookKeeper Getting Started Guide

Page 4
Copyright © 2008 The Apache Software Foundation. All rights reserved.

the CloseCallback interface in
org.apache.bookkeeper.client.AsyncCallback, and a class implementing it
has to implement a method called closeComplete that has the following signature:

void closeComplete(int rc, LedgerHandle lh, Object ctx)

where:

• rc is a return code (please refer to org.apache.bookeeper.client.BKDefs for
a list);

• lh is a LedgerHandle object to manipulate a ledger;

• ctx is control object used for accountability purposes.

1.5. Opening a ledger.

To read from a ledger, a client must open it first. The following methods belong to
org.apache.bookkeeper.client.BookKeeper.

Synchronous open:

public LedgerHandle openLedger(long lId, byte passwd[]) throws
KeeperException, InterruptedException, IOException,
BKException

• ledgerId is the ledger identifier;

• passwd is a password to access the ledger (used only in the case of VERIFIABLE
ledgers);

Asynchronous open:

public void asyncOpenLedger(long lId, byte passwd[],
OpenCallback cb, Object ctx) throws InterruptedException

It also takes a a ledger identifier and a password. Additionaly, it takes a callback object cb
and a control object ctx. The callback object must implement the OpenCallback
interface in org.apache.bookkeeper.client.AsyncCallback, and a class
implementing it has to implement a method called openComplete that has the following
signature:

public void openComplete(int rc, LedgerHandle lh, Object ctx)

where:

• rc is a return code (please refer to org.apache.bookeeper.client.BKDefs for

BookKeeper Getting Started Guide

Page 5
Copyright © 2008 The Apache Software Foundation. All rights reserved.

a list);

• lh is a LedgerHandle object to manipulate a ledger;

• ctx is control object used for accountability purposes.

1.6. Reading from ledger

Read calls may request one or more consecutive entries. The following methods belong to
org.apache.bookkeeper.client.LedgerHandle.

Synchronous read:

public LedgerSequence readEntries(long firstEntry, long
lastEntry) throws InterruptedException, BKException

• firstEntry is the identifier of the first entry in the sequence of entries to read;

• lastEntry is the identifier of the last entry in the sequence of entries to read;

Asynchronous read:

public void asyncReadEntries(long firstEntry, long lastEntry,
ReadCallback cb, Object ctx) throws BKException,
InterruptedException

It also takes a first and a last entry identifiers. Additionaly, it takes a callback object cb and a
control object ctx. The callback object must implement the ReadCallback interface in
org.apache.bookkeeper.client.AsyncCallback, and a class implementing it
has to implement a method called readComplete that has the following signature:

void readComplete(int rc, LedgerHandle lh, LedgerSequence seq,
Object ctx)

where:

• rc is a return code (please refer to org.apache.bookeeper.client.BKDefs for
a list);

• lh is a LedgerHandle object to manipulate a ledger;

• seq is a LedgerSequence object to containing the list of entries requested;

• ctx is control object used for accountability purposes.

BookKeeper Getting Started Guide

Page 6
Copyright © 2008 The Apache Software Foundation. All rights reserved.

	1 Programming with BookKeeper
	1.1 Instantiating BookKeeper.
	1.2 Creating a ledger.
	1.3 Adding entries to a ledger.
	1.4 Closing a ledger.
	1.5 Opening a ledger.
	1.6 Reading from ledger

