ZooKeeper

by

Table of contents
1 ZooKeeper: A Distributed Coordination Service for Distributed Applications.................
1.1 DESIGN GOAIS......ccieeiiiiiiieitie ettt ettt e et s b e et e s ae e e b e e ae e sb e e ebeeereenreenreans
1.2 Data model and the hierarchical NRaMESPACE..........ccccvevevievieie e
1.3 Nodes and ephemeral NOUES..........cceeiiviieiiere e
1.4 Conditional updates and WELCHES............coceriririrerere e s
1.5 GUAIANTEES.........eeeieeeiee ettt ettt ettt e et e bt e saee e be e eaeeesbe e saseebeeeaseeseesabeebeaenneenseesaneans
1.6 SIMPIE AP ..ttt ettt r e e aeenes
L7 IMPIEMENTALION.cciiiiiie et e b e e s se e et e e saeeebeesneeereesnneans

1.10 RETADIHTTY ..c.veieeeeieieeeeeee et st
1.11 The ZOOKEEPES PrOJECL........oivitereiitiriesiesiee ettt

ZooKeeper

1 ZooKeeper: A Distributed Coordination Service for Distributed Applications

ZooK eeper is adistributed, open-source coordination service for distributed applications. It
exposes asimple set of primitives that distributed applications can build upon to implement
higher level services for synchronization, configuration maintenance, and groups and
naming. It is designed to be easy to program to, and uses a data model styled after the
familiar directory tree structure of file systems. It runsin Java and has bindings for both Java
and C.

Coordination services are notoriously hard to get right. They are especialy prone to errors
such as race conditions and deadlock. The motivation behind ZooK eeper isto relieve
distributed applications the responsibility of implementing coordination services from
scratch.

1.1 Design Goals

ZooK egper issimple. ZooK eeper allows distributed processes to coordinate with each other
through a shared hierarchal namespace which is organized similarly to a standard file system.
The name space consists of data registers - called znodes, in ZooK eeper parlance - and these
are similar to files and directories. Unlike atypical file system, which is designed for storage,
ZooK eeper datais kept in-memory, which means ZooK eeper can acheive high throughput
and low latency numbers.

The ZooK eegper implementation puts a premium on high performance, highly available,
strictly ordered access. The performance aspects of ZooK eeper means it can be used in large,
distributed systems. The reliability aspects keep it from being a single point of failure. The
strict ordering means that sophisticated synchronization primitives can be implemented at the
client.

ZooK eeper isreplicated. Like the distributed processes it coordinates, ZooK eeper itself is
intended to be replicated over a sets of hosts called an ensemble.

ZooK eeper Service

Client Client Client Client Client Client Client Client

Page 2

ZooKeeper

The servers that make up the ZooK eeper service must all know about each other. They
maintain an in-memory image of state, along with atransaction logs and snapshotsin a
persistent store. Aslong as amagjority of the servers are available, the ZooK eeper service will
be available.

Clients connect to a single ZooK eeper server. The client maintains a TCP connection through
which it sends requests, gets responses, gets watch events, and sends heart beats. If the TCP
connection to the server breaks, the client will connect to a different server.

ZooK eeper isordered. ZooK eeper stamps each update with a number that reflects the order
of all ZooK eeper transactions. Subsequent operations can use the order to implement higher-
level abstractions, such as synchronization primitives.

ZooK eeper isfast. It is especially fast in "read-dominant” workloads. ZooK eeper
applications run on thousands of machines, and it performs best where reads are more
common than writes, at ratios of around 10:1.

1.2 Data model and the hierarchical namespace

The name space provided by ZooK eeper is much like that of a standard file system. A name
is a sequence of path elements separated by a slash (/). Every node in ZooK eeper's name
spaceisidentified by a path.

ZooK eeper's Hierarchical Namespace

fapp2

fappi/p_1 fappi/p 2 /app1/p_3

1.3 Nodes and ephemeral nodes

Unlike is standard file systems, each node in a ZooK eeper namespace can have data
associated with it aswell as children. It islike having afile-system that allows afileto also
be adirectory. (ZooK eeper was designed to store coordination data: status information,
configuration, location information, etc., so the data stored at each node is usually small, in
the byte to kilobyte range.) We use the term znode to make it clear that we are talking about
ZooK eeper data nodes.

Page 3

ZooKeeper

Znodes maintain a stat structure that includes version numbers for data changes, ACL
changes, and timestamps, to allow cache validations and coordinated updates. Each time a
znode's data changes, the version number increases. For instance, whenever a client retrieves
data it also receives the version of the data.

The data stored at each znode in a namespace is read and written atomically. Reads get all the
data bytes associated with a znode and a write replaces all the data. Each node has an Access
Control List (ACL) that restricts who can do what.

ZooK eeper also has the notion of ephemeral nodes. These znodes exists as long as the
session that created the znode is active. When the session ends the znode is del eted.
Ephemeral nodes are useful when you want to implement [thd] .

1.4 Conditional updates and watches

ZooK eeper supports the concept of watches. Clients can set awatch on aznodes. A watch
will be triggered and removed when the znode changes. When awatch is triggered the client
receives a packet saying that the znode has changed. And if the connection between the client
and one of the Zoo Keeper serversis broken, the client will receive alocal notification. These
can be used to [thd].

1.5 Guarantees

ZooK eeper isvery fast and very simple. Sinceits goal, though, isto be a basis for the
construction of more complicated services, such as synchronization, it provides a set of
guarantees. These are:

* Sequential Consistency - Updates from aclient will be applied in the order that they were
sent.

» Atomicity - Updates either succeed or fail. No partial results.

* Single System Image - A client will see the same view of the service regardless of the
server that it connects to.

* Réliahility - Once an update has been applied, it will persist from that time forward until
aclient overwrites the update.

» Timeliness- The clients view of the system is guaranteed to be up-to-date within a
certain time bound.

For more information on these, and how they can be used, see [thd]

1.6 Simple API

One of the design goals of ZooK eeper is provide avery simple programming interface. Asa
result, it supports only these operations:

Page 4

ZooKeeper

create

creates anode at alocation in the tree

delete

deletes anode

exists

testsif anode exists at alocation

get data

reads the data from a node

set data

writes data to a node

get children

retrieves alist of children of anode

sync

waits for data to be propagated
For amore in-depth discussion on these, and how they can be used to implement higher level
operations, please refer to [thd]

1.7 Implementation

ZooK eeper Components shows the high-level components of the ZooK eeper service. With
the exception of the request processor, each of the servers that make up the ZooK eeper
service replicates its own copy of each of components.

ZooK eeper Components

ZooKeeper Service

Write
Request

Request
Processor

—= e

‘S—) Response

Replicated
Database

Atomic
Broadcast

Read
Request

Page 5

ZooKeeper

The replicated database is an in-memory database containing the entire data tree. Updates are
logged to disk for recoverability, and writes are serialized to disk before they are applied to
the in-memory database.

Every ZooKeeper server services clients. Clients connect to exactly one server to submit
irequests. Read requests are serviced from the local replica of each server database. Requests
that change the state of the service, write requests, are processed by an agreement protocol.

As part of the agreement protocol all write requests from clients are forwarded to asingle
server, called the leader. The rest of the ZooK eeper servers, called followers, receive
message proposals from the leader and agree upon message delivery. The messaging layer
takes care of replacing leaders on failures and syncing followers with leaders.

ZooK eeper uses a custom atomic messaging protocol. Since the messaging layer is atomic,
ZooK eeper can guarantee that the local replicas never diverge. When the leader receives a
write request, it calculates what the state of the system is when the write is to be applied and
transforms this into a transaction that captures this new state.

1.8 Uses

The programming interface to ZooK eeper is deliberately simple. With it, however, you can
implement higher order operations, such as synchronizations primitives, group membership,
ownership, etc. Some distributed applications have used it to: [tbd: add uses from white
paper and video presentation.] For more information, see [thd]

1.9 Performance

ZooK eeper is designed to be highly performant. But isit? The results of the ZooK eeper's
development team at Y ahoo! Research indicate that it is. (See ZooK eeper Throughput

as the Read-Write Ratio Varies.) It is especialy high performance in applications where
reads outnumber writes, since writes involve synchronizing the state of all servers. (Reads
outnumbering writes is typically the case for a coordination service.)

ZooK eeper Throughput as the Read-Write Ratio Varies

Page 6

ZooKeeper

210 clients

140000 .

3 zervers :

b servers -+
120000 p 7 servers - i

9 servers fr

13 servers

100000

80000

0000

Requests per second

40000 p

20000 p

0 20 40 60 80 100
Percentage of reguest that are reads

The figure ZooK eeper Throughput as the Read-Write Ratio Variesis a throughput graph of

ZooK eeper release 3.2 running on servers with dual 2Ghz Xeon and two SATA 15K RPM

drives. One drive was used as a dedicated ZooK eeper log device. The snapshots were written

to the OS drive. Write requests were 1K writes and the reads were 1K reads. "Servers'

indicate the size of the ZooK eeper ensemble, the number of servers that make up the service.

Approximately 30 other servers were used to simulate the clients. The ZooK eeper ensemble
was configured such that leaders do not allow connections from clients.

In version 3.2 r/w performance improved by ~2x compared to the previous 3.1 release. ‘

Benchmarks also indicate that it is reliable, too. Reliability in the Presence of Errors shows
how a deployment responds to various failures. The events marked in the figure are the
following:

1. Failure and recovery of afollower

Failure and recovery of adifferent follower
Failure of the leader

Failure and recovery of two followers
Failure of another |eader

g ~ wD

Page 7

http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperOver.html#Performance

ZooKeeper

1.10 Reliability

To show the behavior of the system over time as failures are injected we ran a ZooK eeper
service made up of 7 machines. We ran the same saturation benchmark as before, but this
time we kept the write percentage at a constant 30%, which is a conservative ratio of our
expected workloads.

Reliability in the Presence of Errors

910 clients
45000
40000
-
8
@ 35000
]
(=N
73]
7]
© 30000
3
[k]
o
25000
20000
0 50 100 150 200 250 300 350 400
Time (s)

The are afew important observations from this graph. First, if followers fail and recover
quickly, then ZooK eeper is able to sustain a high throughput despite the failure. But maybe
more importantly, the leader election algorithm allows for the system to recover fast enough
to prevent throughput from dropping substantially. In our observations, ZooK eeper takes
less than 200ms to elect a new leader. Third, as followers recover, ZooK eeper isableto raise
throughput again once they start processing requests.

1.11 The ZooKeeper Project

ZooK eeper has been successfully used in many industrial applications. It is used at Y ahoo!
as the coordination and failure recovery service for Y ahoo! Message Broker, whichisa

Page 8

http://wiki.apache.org/hadoop/ZooKeeper/PoweredBy

ZooKeeper

highly scalable publish-subscribe system managing thousands of topics for replication and
datadelivery. It is used by the Fetching Service for Yahoo! crawler, where it also manages
failure recovery. A number of Y ahoo! advertising systems also use ZooK eeper to implement
reliable services.

All users and devel opers are encouraged to join the community and contribute their expertise.
Seethe Zookeeper Project on Apache for more information.

Page 9

http://hadoop.apache.org/zookeeper/

	Table of contents
	1 ZooKeeper: A Distributed Coordination Service for Distributed Applications
	1.1 Design Goals
	1.2 Data model and the hierarchical namespace
	1.3 Nodes and ephemeral nodes
	1.4 Conditional updates and watches
	1.5 Guarantees
	1.6 Simple API
	1.7 Implementation
	1.8 Uses
	1.9 Performance
	1.10 Reliability
	1.11 The ZooKeeper Project

