
Copyright © 2008 The Apache Software Foundation. All rights reserved.

ZooKeeper Internals

by

Table of contents

1 Introduction.. 2

2 Atomic Broadcast...2

 2.1 Guarantees, Properties, and Definitions..2

 2.2 Leader Activation..4

 2.3 Active Messaging..5

 2.4 Summary... 6

 2.5 Comparisons..7

3 Quorums... 7

4 Logging...8

 4.1 Developer Guidelines..8

ZooKeeper Internals

Page 2Copyright © 2008 The Apache Software Foundation. All rights reserved.

1 Introduction

This document contains information on the inner workings of ZooKeeper. So far, it discusses
these topics:

• Atomic Broadcast
• Logging

2 Atomic Broadcast

At the heart of ZooKeeper is an atomic messaging system that keeps all of the servers in
sync.

2.1 Guarantees, Properties, and Definitions

The specific guarantees provided by the messaging system used by ZooKeeper are the
following:

Reliable delivery
If a message, m, is delivered by one server, it will be eventually delivered by all servers.
Total order
If a message is delivered before message b by one server, a will be delivered before b by
all servers. If a and b are delivered messages, either a will be delivered before b or b will
be delivered before a.
Causal order
If a message b is sent after a message a has been delivered by the sender of b, a must be
ordered before b. If a sender sends c after sending b, c must be ordered after b.

The ZooKeeper messaging system also needs to be efficient, reliable, and easy to implement
and maintain. We make heavy use of messaging, so we need the system to be able to handle
thousands of requests per second. Although we can require at least k+1 correct servers to
send new messages, we must be able to recover from correlated failures such as power
outages. When we implemented the system we had little time and few engineering resources,
so we needed a protocol that is accessible to engineers and is easy to implement. We found
that our protocol satisfied all of these goals.

Our protocol assumes that we can construct point-to-point FIFO channels between the
servers. While similar services usually assume message delivery that can lose or reorder
messages, our assumption of FIFO channels is very practical given that we use TCP for
communication. Specifically we rely on the following property of TCP:

Ordered delivery
Data is delivered in the same order it is sent and a message m is delivered only after all
messages sent before m have been delivered. (The corollary to this is that if message m is
lost all messages after m will be lost.)

ZooKeeper Internals

Page 3Copyright © 2008 The Apache Software Foundation. All rights reserved.

No message after close
Once a FIFO channel is closed, no messages will be received from it.

FLP proved that consensus cannot be achieved in asynchronous distributed systems if
failures are possible. To ensure we achieve consensus in the presence of failures we use
timeouts. However, we rely on times for liveness not for correctness. So, if timeouts stop
working (clocks malfunction for example) the messaging system may hang, but it will not
violate its guarantees.

When describing the ZooKeeper messaging protocol we will talk of packets, proposals, and
messages:

Packet
a sequence of bytes sent through a FIFO channel
Proposal
a unit of agreement. Proposals are agreed upon by exchanging packets with a quorum
of ZooKeeper servers. Most proposals contain messages, however the NEW_LEADER
proposal is an example of a proposal that does not correspond to a message.
Message
a sequence of bytes to be atomically broadcast to all ZooKeeper servers. A message put
into a proposal and agreed upon before it is delivered.

As stated above, ZooKeeper guarantees a total order of messages, and it also guarantees a
total order of proposals. ZooKeeper exposes the total ordering using a ZooKeeper transaction
id (zxid). All proposals will be stamped with a zxid when it is proposed and exactly reflects
the total ordering. Proposals are sent to all ZooKeeper servers and committed when a quorum
of them acknowledge the proposal. If a proposal contains a message, the message will be
delivered when the proposal is committed. Acknowledgement means the server has recorded
the proposal to persistent storage. Our quorums have the requirement that any pair of quorum
must have at least one server in common. We ensure this by requiring that all quorums have
size (n/2+1) where n is the number of servers that make up a ZooKeeper service.

The zxid has two parts: the epoch and a counter. In our implementation the zxid is a 64-
bit number. We use the high order 32-bits for the epoch and the low order 32-bits for the
counter. Because it has two parts represent the zxid both as a number and as a pair of
integers, (epoch, count). The epoch number represents a change in leadership. Each time a
new leader comes into power it will have its own epoch number. We have a simple algorithm
to assign a unique zxid to a proposal: the leader simply increments the zxid to obtain a
unique zxid for each proposal. Leadership activation will ensure that only one leader uses a
given epoch, so our simple algorithm guarantees that every proposal will have a unique id.

ZooKeeper messaging consists of two phases:

Leader activation

ZooKeeper Internals

Page 4Copyright © 2008 The Apache Software Foundation. All rights reserved.

In this phase a leader establishes the correct state of the system and gets ready to start
making proposals.
Active messaging
In this phase a leader accepts messages to propose and coordinates message delivery.

ZooKeeper is a holistic protocol. We do not focus on individual proposals, rather look at
the stream of proposals as a whole. Our strict ordering allows us to do this efficiently and
greatly simplifies our protocol. Leadership activation embodies this holistic concept. A
leader becomes active only when a quorum of followers (The leader counts as a follower as
well. You can always vote for yourself) has synced up with the leader, they have the same
state. This state consists of all of the proposals that the leader believes have been committed
and the proposal to follow the leader, the NEW_LEADER proposal. (Hopefully you are
thinking to yourself, Does the set of proposals that the leader believes has been committed
included all the proposals that really have been committed? The answer is yes. Below, we
make clear why.)

2.2 Leader Activation

Leader activation includes leader election. We currently have two leader election algorithms
in ZooKeeper: LeaderElection and FastLeaderElection (AuthFastLeaderElection is a
variant of FastLeaderElection that uses UDP and allows servers to perform a simple form
of authentication to avoid IP spoofing). ZooKeeper messaging doesn't care about the exact
method of electing a leader has long as the following holds:

• The leader has seen the highest zxid of all the followers.
• A quorum of servers have committed to following the leader.

Of these two requirements only the first, the highest zxid amoung the followers needs to hold
for correct operation. The second requirement, a quorum of followers, just needs to hold with
high probability. We are going to recheck the second requirement, so if a failure happens
during or after the leader election and quorum is lost, we will recover by abandoning leader
activation and running another election.

After leader election a single server will be designated as a leader and start waiting for
followers to connect. The rest of the servers will try to connect to the leader. The leader will
sync up with followers by sending any proposals they are missing, or if a follower is missing
too many proposals, it will send a full snapshot of the state to the follower.

There is a corner case in which a follower that has proposals, U, not seen by a leader arrives.
Proposals are seen in order, so the proposals of U will have a zxids higher than zxids seen by
the leader. The follower must have arrived after the leader election, otherwise the follower
would have been elected leader given that it has seen a higher zxid. Since committed
proposals must be seen by a quorum of servers, and a quorum of servers that elected the

ZooKeeper Internals

Page 5Copyright © 2008 The Apache Software Foundation. All rights reserved.

leader did not see U, the proposals of you have not been committed, so they can be discarded.
When the follower connects to the leader, the leader will tell the follower to discard U.

A new leader establishes a zxid to start using for new proposals by getting the epoch, e, of
the highest zxid it has seen and setting the next zxid to use to be (e+1, 0), fter the leader
syncs with a follower, it will propose a NEW_LEADER proposal. Once the NEW_LEADER
proposal has been committed, the leader will activate and start receiving and issuing
proposals.

It all sounds complicated but here are the basic rules of operation during leader activation:

• A follower will ACK the NEW_LEADER proposal after it has synced with the leader.
• A follower will only ACK a NEW_LEADER proposal with a given zxid from a single

server.
• A new leader will COMMIT the NEW_LEADER proposal when a quorum of followers

have ACKed it.
• A follower will commit any state it received from the leader when the NEW_LEADER

proposal is COMMIT.
• A new leader will not accept new proposals until the NEW_LEADER proposal has been

COMMITED.

If leader election terminates erroneously, we don't have a problem since the NEW_LEADER
proposal will not be committed since the leader will not have quorum. When this happens,
the leader and any remaining followers will timeout and go back to leader election.

2.3 Active Messaging

Leader Activation does all the heavy lifting. Once the leader is coronated he can start blasting
out proposals. As long as he remains the leader no other leader can emerge since no other
leader will be able to get a quorum of followers. If a new leader does emerge, it means that
the leader has lost quorum, and the new leader will clean up any mess left over during her
leadership activation.

ZooKeeper messaging operates similar to a classic two-phase commit.

ZooKeeper Internals

Page 6Copyright © 2008 The Apache Software Foundation. All rights reserved.

All communication channels are FIFO, so everything is done in order. Specifically the
following operating constraints are observed:

• The leader sends proposals to all followers using the same order. Moreover, this order
follows the order in which requests have been received. Because we use FIFO channels
this means that followers also receive proposals in order.

• Followers process messages in the order they are received. This means that messages
will be ACKed in order and the leader will receive ACKs from followers in order, due
to the FIFO channels. It also means that if message m has been written to non-volatile
storage, all messages that were proposed before m have been written to non-volatile
storage.

• The leader will issue a COMMIT to all followers as soon as a quorum of followers have
ACKed a message. Since messages are ACKed in order, COMMITs will be sent by the
leader as received by the followers in order.

• COMMITs are processed in order. Followers deliver a proposals message when that
proposal is committed.

2.4 Summary

So there you go. Why does it work? Specifically, why does is set of proposals believed
by a new leader always contain any proposal that has actually been committed? First, all
proposals have a unique zxid, so unlike other protocols, we never have to worry about two
different values being proposed for the same zxid; followers (a leader is also a follower) see
and record proposals in order; proposals are committed in order; there is only one active
leader at a time since followers only follow a single leader at a time; a new leader has seen
all committed proposals from the previous epoch since it has seen the highest zxid from a

ZooKeeper Internals

Page 7Copyright © 2008 The Apache Software Foundation. All rights reserved.

quorum of servers; any uncommited proposals from a previous epoch seen by a new leader
will be committed by that leader before it becomes active.

2.5 Comparisons

Isn't this just Multi-Paxos? No, Multi-Paxos requires some way of assuring that there is
only a single coordinator. We do not count on such assurances. Instead we use the leader
activation to recover from leadership change or old leaders believing they are still active.

Isn't this just Paxos? Your active messaging phase looks just like phase 2 of Paxos? Actually,
to us active messaging looks just like 2 phase commit without the need to handle aborts.
Active messaging is different from both in the sense that it has cross proposal ordering
requirements. If we do not maintain strict FIFO ordering of all packets, it all falls apart.
Also, our leader activation phase is different from both of them. In particular, our use of
epochs allows us to skip blocks of uncommitted proposals and to not worry about duplicate
proposals for a given zxid.

3 Quorums

Atomic broadcast and leader election use the notion of quorum to guarantee a consistent
view of the system. By default, ZooKeeper uses majority quorums, which means that
every voting that happens in one of these protocols requires a majority to vote on. One
example is acknowledging a leader proposal: the leader can only commit once it receives an
acknowledgement from a quorum of servers.

If we extract the properties that we really need from our use of majorities, we have that we
only need to guarantee that groups of processes used to validate an operation by voting (e.g.,
acknowledging a leader proposal) pairwise intersect in at least one server. Using majorities
guarantees such a property. However, there are other ways of constructing quorums different
from majorities. For example, we can assign weights to the votes of servers, and say that the
votes of some servers are more important. To obtain a quorum, we get enough votes so that
the sum of weights of all votes is larger than half of the total sum of all weights.

A different construction that uses weights and is useful in wide-area deployments (co-
locations) is a hierarchical one. With this construction, we split the servers into disjoint
groups and assign weights to processes. To form a quorum, we have to get a hold of enough
servers from a majority of groups G, such that for each group g in G, the sum of votes from g
is larger than half of the sum of weights in g. Interestingly, this construction enables smaller
quorums. If we have, for example, 9 servers, we split them into 3 groups, and assign a
weight of 1 to each server, then we are able to form quorums of size 4. Note that two subsets
of processes composed each of a majority of servers from each of a majority of groups
necessarily have a non-empty intersection. It is reasonable to expect that a majority of co-
locations will have a majority of servers available with high probability.

ZooKeeper Internals

Page 8Copyright © 2008 The Apache Software Foundation. All rights reserved.

With ZooKeeper, we provide a user with the ability of configuring servers to use majority
quorums, weights, or a hierarchy of groups.

4 Logging

Zookeeper uses slf4j as an abstraction layer for logging. log4j in version 1.2 is chosen as
the final logging implementation for now. For better embedding support, it is planned in the
future to leave the decision of choosing the final logging implementation to the end user.
Therefore, always use the slf4j api to write log statements in the code, but configure log4j for
how to log at runtime. Note that slf4j has no FATAL level, former messages at FATAL level
have been moved to ERROR level. For information on configuring log4j for ZooKeeper, see
the Logging section of the ZooKeeper Administrator's Guide.

4.1 Developer Guidelines

Please follow the slf4j manual when creating log statements within code. Also read the FAQ
on performance , when creating log statements. Patch reviewers will look for the following:

4.1.1 Logging at the Right Level

There are several levels of logging in slf4j. It's important to pick the right one. In order of
higher to lower severity:
1. ERROR level designates error events that might still allow the application to continue

running.
2. WARN level designates potentially harmful situations.
3. INFO level designates informational messages that highlight the progress of the

application at coarse-grained level.
4. DEBUG Level designates fine-grained informational events that are most useful to debug

an application.
5. TRACE Level designates finer-grained informational events than the DEBUG.

ZooKeeper is typically run in production such that log messages of INFO level severity and
higher (more severe) are output to the log.

4.1.2 Use of Standard slf4j Idioms

Static Message Logging

LOG.debug("process completed successfully!");

However when creating parameterized messages are required, use formatting anchors.

LOG.debug("got {} messages in {} minutes",new Object[]{count,time});

http://www.slf4j.org/index.html
http://logging.apache.org/log4j
zookeeperAdmin.html#sc_logging
zookeeperAdmin.html
http://www.slf4j.org/manual.html
http://www.slf4j.org/faq.html#logging_performance
http://www.slf4j.org/faq.html#logging_performance

ZooKeeper Internals

Page 9Copyright © 2008 The Apache Software Foundation. All rights reserved.

Naming

Loggers should be named after the class in which they are used.

public class Foo {
 private static final Logger LOG = LoggerFactory.getLogger(Foo.class);

 public Foo() {
 LOG.info("constructing Foo");

Exception handling

try {
 // code
} catch (XYZException e) {
 // do this
 LOG.error("Something bad happened", e);
 // don't do this (generally)
 // LOG.error(e);
 // why? because "don't do" case hides the stack trace

 // continue process here as you need... recover or (re)throw
}

	Table of contents
	1 Introduction
	2 Atomic Broadcast
	2.1 Guarantees, Properties, and Definitions
	2.2 Leader Activation
	2.3 Active Messaging
	2.4 Summary
	2.5 Comparisons

	3 Quorums
	4 Logging
	4.1 Developer Guidelines
	4.1.1 Logging at the Right Level
	4.1.2 Use of Standard slf4j Idioms

