
Copyright © 2008 The Apache Software Foundation. All rights reserved.

ZooKeeper Observers

by

Table of contents

1 Observers: Scaling ZooKeeper Without Hurting Write Performance 2

2 How to use Observers..2

3 Example use cases..3

ZooKeeper Observers

Page 2Copyright © 2008 The Apache Software Foundation. All rights reserved.

1 Observers: Scaling ZooKeeper Without Hurting Write Performance

Although ZooKeeper performs very well by having clients connect directly to voting
members of the ensemble, this architecture makes it hard to scale out to huge numbers of
clients. The problem is that as we add more voting members, the write performance drops.
This is due to the fact that a write operation requires the agreement of (in general) at least
half the nodes in an ensemble and therefore the cost of a vote can increase significantly as
more voters are added.

We have introduced a new type of ZooKeeper node called an Observer which helps address
this problem and further improves ZooKeeper's scalability. Observers are non-voting
members of an ensemble which only hear the results of votes, not the agreement protocol that
leads up to them. Other than this simple distinction, Observers function exactly the same as
Followers - clients may connect to them and send read and write requests to them. Observers
forward these requests to the Leader like Followers do, but they then simply wait to hear the
result of the vote. Because of this, we can increase the number of Observers as much as we
like without harming the performance of votes.

Observers have other advantages. Because they do not vote, they are not a critical part of the
ZooKeeper ensemble. Therefore they can fail, or be disconnected from the cluster, without
harming the availability of the ZooKeeper service. The benefit to the user is that Observers
may connect over less reliable network links than Followers. In fact, Observers may be used
to talk to a ZooKeeper server from another data center. Clients of the Observer will see
fast reads, as all reads are served locally, and writes result in minimal network traffic as the
number of messages required in the absence of the vote protocol is smaller.

2 How to use Observers

Setting up a ZooKeeper ensemble that uses Observers is very simple, and requires just two
changes to your config files. Firstly, in the config file of every node that is to be an Observer,
you must place this line:

 peerType=observer

This line tells ZooKeeper that the server is to be an Observer. Secondly, in every server
config file, you must add :observer to the server definition line of each Observer. For
example:

 server.1:localhost:2181:3181:observer

ZooKeeper Observers

Page 3Copyright © 2008 The Apache Software Foundation. All rights reserved.

This tells every other server that server.1 is an Observer, and that they should not expect it
to vote. This is all the configuration you need to do to add an Observer to your ZooKeeper
cluster. Now you can connect to it as though it were an ordinary Follower. Try it out, by
running:

 bin/zkCli.sh -server localhost:2181

where localhost:2181 is the hostname and port number of the Observer as specified in every
config file. You should see a command line prompt through which you can issue commands
like ls to query the ZooKeeper service.

3 Example use cases

Two example use cases for Observers are listed below. In fact, wherever you wish to scale
the numbe of clients of your ZooKeeper ensemble, or where you wish to insulate the critical
part of an ensemble from the load of dealing with client requests, Observers are a good
architectural choice.

• As a datacenter bridge: Forming a ZK ensemble between two datacenters is a problematic
endeavour as the high variance in latency between the datacenters could lead to false
positive failure detection and partitioning. However if the ensemble runs entirely in one
datacenter, and the second datacenter runs only Observers, partitions aren't problematic
as the ensemble remains connected. Clients of the Observers may still see and issue
proposals.

• As a link to a message bus: Some companies have expressed an interest in using ZK
as a component of a persistent reliable message bus. Observers would give a natural
integration point for this work: a plug-in mechanism could be used to attach the stream of
proposals an Observer sees to a publish-subscribe system, again without loading the core
ensemble.

	Table of contents
	1 Observers: Scaling ZooKeeper Without Hurting Write Performance
	2 How to use Observers
	3 Example use cases

