
Copyright © 2008 The Apache Software Foundation. All rights reserved.

BookKeeper overview

by

Table of contents

1 BookKeeper overview..2

 1.1 BookKeeper introduction..2

 1.2 In slightly more detail...2

 1.3 Bookkeeper elements and concepts.. 3

 1.4 Bookkeeper initial design... 3

 1.5 Bookkeeper metadata management.. 5

 1.6 Closing out ledgers... 6

BookKeeper overview

Page 2Copyright © 2008 The Apache Software Foundation. All rights reserved.

1 BookKeeper overview

1.1 BookKeeper introduction

BookKeeper is a replicated service to reliably log streams of records. In BookKeeper, servers
are "bookies", log streams are "ledgers", and each unit of a log (aka record) is a "ledger
entry". BookKeeper is designed to be reliable; bookies, the servers that store ledgers, can
crash, corrupt data, discard data, but as long as there are enough bookies behaving correctly
the service as a whole behaves correctly.

The initial motivation for BookKeeper comes from the namenode of HDFS. Namenodes
have to log operations in a reliable fashion so that recovery is possible in the case of crashes.
We have found the applications for BookKeeper extend far beyond HDFS, however.
Essentially, any application that requires an append storage can replace their implementations
with BookKeeper. BookKeeper has the advantage of scaling throughput with the number of
servers.

At a high level, a bookkeeper client receives entries from a client application and stores it to
sets of bookies, and there are a few advantages in having such a service:

• We can use hardware that is optimized for such a service. We currently believe that such
a system has to be optimized only for disk I/O;

• We can have a pool of servers implementing such a log system, and shared among a
number of servers;

• We can have a higher degree of replication with such a pool, which makes sense if the
hardware necessary for it is cheaper compared to the one the application uses.

1.2 In slightly more detail...

BookKeeper implements highly available logs, and it has been designed with write-ahead
logging in mind. Besides high availability due to the replicated nature of the service, it
provides high throughput due to striping. As we write entries in a subset of bookies of an
ensemble and rotate writes across available quorums, we are able to increase throughput with
the number of servers for both reads and writes. Scalability is a property that is possible to
achieve in this case due to the use of quorums. Other replication techniques, such as state-
machine replication, do not enable such a property.

An application first creates a ledger before writing to bookies through a local BookKeeper
client instance. Upon creating a ledger, a BookKeeper client writes metadata about the ledger
to ZooKeeper. Each ledger currently has a single writer. This writer has to execute a close
ledger operation before any other client can read from it. If the writer of a ledger does not
close a ledger properly because, for example, it has crashed before having the opportunity
of closing the ledger, then the next client that tries to open a ledger executes a procedure to
recover it. As closing a ledger consists essentially of writing the last entry written to a ledger

BookKeeper overview

Page 3Copyright © 2008 The Apache Software Foundation. All rights reserved.

to ZooKeeper, the recovery procedure simply finds the last entry written correctly and writes
it to ZooKeeper.

Note that currently this recovery procedure is executed automatically upon trying to open a
ledger and no explicit action is necessary. Although two clients may try to recover a ledger
concurrently, only one will succeed, the first one that is able to create the close znode for the
ledger.

1.3 Bookkeeper elements and concepts

BookKeeper uses four basic elements:

• Ledger: A ledger is a sequence of entries, and each entry is a sequence of bytes. Entries
are written sequentially to a ledger and at most once. Consequently, ledgers have an
append-only semantics;

• BookKeeper client: A client runs along with a BookKeeper application, and it enables
applications to execute operations on ledgers, such as creating a ledger and writing to it;

• Bookie: A bookie is a BookKeeper storage server. Bookies store the content of ledgers.
For any given ledger L, we call an ensemble the group of bookies storing the content of
L. For performance, we store on each bookie of an ensemble only a fragment of a ledger.
That is, we stripe when writing entries to a ledger such that each entry is written to sub-
group of bookies of the ensemble.

• Metadata storage service: BookKeeper requires a metadata storage service to store
information related to ledgers and available bookies. We currently use ZooKeeper for
such a task.

1.4 Bookkeeper initial design

A set of bookies implements BookKeeper, and we use a quorum-based protocol to replicate
data across the bookies. There are basically two operations to an existing ledger: read and
append. Here is the complete API list (mode detail here):

• Create ledger: creates a new empty ledger;
• Open ledger: opens an existing ledger for reading;
• Add entry: adds a record to a ledger either synchronously or asynchronously;
• Read entries: reads a sequence of entries from a ledger either synchronously or

asynchronously

There is only a single client that can write to a ledger. Once that ledger is closed or the
client fails, no more entries can be added. (We take advantage of this behavior to provide
our strong guarantees.) There will not be gaps in the ledger. Fingers get broken, people
get roughed up or end up in prison when books are manipulated, so there is no deleting or
changing of entries.

bookkeeperProgrammer.html

BookKeeper overview

Page 4Copyright © 2008 The Apache Software Foundation. All rights reserved.

BookKeeper Overview

A simple use of BooKeeper is to implement a write-ahead transaction log. A server maintains
an in-memory data structure (with periodic snapshots for example) and logs changes to
that structure before it applies the change. The application server creates a ledger at startup
and store the ledger id and password in a well known place (ZooKeeper maybe). When it
needs to make a change, the server adds an entry with the change information to a ledger
and apply the change when BookKeeper adds the entry successfully. The server can even
use asyncAddEntry to queue up many changes for high change throughput. BooKeeper
meticulously logs the changes in order and call the completion functions in order.

When the application server dies, a backup server will come online, get the last snapshot
and then it will open the ledger of the old server and read all the entries from the
time the snapshot was taken. (Since it doesn't know the last entry number it will use
MAX_INTEGER). Once all the entries have been processed, it will close the ledger and start
a new one for its use.

A client library takes care of communicating with bookies and managing entry numbers. An
entry has the following fields:

Field Type Description

Ledger number long The id of the ledger of this entry

Entry number long The id of this entry

BookKeeper overview

Page 5Copyright © 2008 The Apache Software Foundation. All rights reserved.

Field Type Description

last confirmed (LC) long id of the last recorded entry

data byte[] the entry data (supplied by
application)

authentication code byte[] Message authentication code that
includes all other fields of the
entry

Table 2: Entry fields

The client library generates a ledger entry. None of the fields are modified by the bookies
and only the first three fields are interpreted by the bookies.

To add to a ledger, the client generates the entry above using the ledger number. The entry
number will be one more than the last entry generated. The LC field contains the last entry
that has been successfully recorded by BookKeeper. If the client writes entries one at a time,
LC is the last entry id. But, if the client is using asyncAddEntry, there may be many entries in
flight. An entry is considered recorded when both of the following conditions are met:

• the entry has been accepted by a quorum of bookies
• all entries with a lower entry id have been accepted by a quorum of bookies

LC seems mysterious right now, but it is too early to explain how we use it; just smile and
move on.

Once all the other fields have been field in, the client generates an authentication code with
all of the previous fields. The entry is then sent to a quorum of bookies to be recorded. Any
failures will result in the entry being sent to a new quorum of bookies.

To read, the client library initially contacts a bookie and starts requesting entries. If an entry
is missing or invalid (a bad MAC for example), the client will make a request to a different
bookie. By using quorum writes, as long as enough bookies are up we are guaranteed to
eventually be able to read an entry.

1.5 Bookkeeper metadata management

There are some meta data that needs to be made available to BookKeeper clients:

• The available bookies;
• The list of ledgers;
• The list of bookies that have been used for a given ledger;
• The last entry of a ledger;

We maintain this information in ZooKeeper. Bookies use ephemeral nodes to indicate their
availability. Clients use znodes to track ledger creation and deletion and also to know the

BookKeeper overview

Page 6Copyright © 2008 The Apache Software Foundation. All rights reserved.

end of the ledger and the bookies that were used to store the ledger. Bookies also watch the
ledger list so that they can cleanup ledgers that get deleted.

1.6 Closing out ledgers

The process of closing out the ledger and finding the last ledger is difficult due to the
durability guarantees of BookKeeper:

• If an entry has been successfully recorded, it must be readable.
• If an entry is read once, it must always be available to be read.

If the ledger was closed gracefully, ZooKeeper will have the last entry and everything will
work well. But, if the BookKeeper client that was writing the ledger dies, there is some
recovery that needs to take place.

The problematic entries are the ones at the end of the ledger. There can be entries in flight
when a BookKeeper client dies. If the entry only gets to one bookie, the entry should not be
readable since the entry will disappear if that bookie fails. If the entry is only on one bookie,
that doesn't mean that the entry has not been recorded successfully; the other bookies that
recorded the entry might have failed.

The trick to making everything work is to have a correct idea of a last entry. We do it in
roughly three steps:
1. Find the entry with the highest last recorded entry, LC;
2. Find the highest consecutively recorded entry, LR;
3. Make sure that all entries between LC and LR are on a quorum of bookies;

	Table of contents
	1 BookKeeper overview
	1.1 BookKeeper introduction
	1.2 In slightly more detail...
	1.3 Bookkeeper elements and concepts
	1.4 Bookkeeper initial design
	1.5 Bookkeeper metadata management
	1.6 Closing out ledgers

