ZooKeeper Programmer's Guide

Developing Distributed Applications that use ZooKeeper

by

Table of contents

I 11100 [FTox o o OSSPSR 3
2 The ZooKeeper DaaMOUE.........ccooiiiieece ettt 3
25 A N[0 =SSR 4
22 TIME N ZOOKEEPDEY ..ottt ettt sttt se et bbb st e e e e e e e s e nbeneesne e 5
2.3 ZOOKEEPES SLAl SITUCIUIE........coiiieiiieteee e 6
3 ZOOK EEPEN SESSIONS.....eeiteeirieiieeiteeeteessteesseeseeabeeasseaseesseeeseeasseeaseessseeseeanseessessaseenseesnns 7
4 ZOOK EEPE! WEALCNES.........eeiieeie ettt sttt sttt s be et e saeesre e s e s e e nneenteeneenns 9
4.1 What ZooK eeper Guarantees about WatChes...........cvevveeereeneccie e 10
4.2 Things to Remember about WaLChES............cooiiiiininineneeee e 11
5 ZooK eeper access CONIOl USING ACLS.......coiiirieierieriesie et 11
5.1 ACL PEIMISSIONS......eiiiiiiieieeiiesit ettt sttt sae e ee e e see e e e sneesneeneeeneeneas 12
6 Pluggable ZooK egper authentiCation..............ccceeiieiiieiee e 16
7 CONSISLENCY GUANAINTEES........eiueevieieeieeiteeieestee e eeesteesteeeesseesesseesaeesesseesseesesseesreensesneens 17
0= 1 011 0T 18
8.1 JAVABINGING......ctiitiiiiiee et 19
8.2 C BINUING. ...ttt ettt ne e 19
9 Building Blocks: A Guide to ZooKeeper OpPErationsS............cceeerererierereeieeneeseeseeseennes 21
9.1 HaNAIING EITOIS........eeeeiecee ettt ettt sra e aeennee s 22
9.2 CONNECLING tO ZOOKEEPETc.veeeecieeieeee et et sttt ee st e ae e sre e e e e teeeesreenreennens 22
9.3 REA OPEBLIONS.......ccueeieiiestieiteete st estesee st e e e e te e e s e s seeteeseesseensesseenseeneesseessennsenns 22

ZooKeeper Programmer's Guide

9.5 HaNAIING WELCHES.......ouiiiiiieieee ettt sttt 22
9.6 Miscelleaneous ZooK eeper OPEratioNS..........cueccueeiieiieeiiieeieesieesee e sree e sreesee e 22
10 Program Structure, with Simple EXamMpPIe..........cccoevveveieeiece e 22
11 Gotchas: Common Problems and Troubleshooting...........ccceeevvevecieveese e 22

Page 2

ZooKeeper Programmer's Guide

1. Introduction

This document is a guide for developers wishing to create distributed applications that take
advantage of ZooK eeper's coordination services. It contains conceptual and practical
information.

Thefirst four sections of this guide present higher level discussions of various ZooK eeper
concepts. These are necessary both for an understanding of how ZooK eeper works as well
how to work with it. It does not contain source code, but it does assume a familiarity with the
problems associated with distributed computing. The sectionsin thisfirst group are:

» TheZooKeeper DataModel
o ZooKeeper Sessions

o ZooKeeper Watches

« Consistency Guarantees

The next four sections provide practical programming information. These are:
« Building Blocks: A Guide to ZooK eeper Operations

e Bindings

« Program Structure, with Simple Example [thd)]

» Gotchas: Common Problems and Troubleshooting

The book concludes with an appendix containing links to other useful, ZooK eeper-rel ated
information.

Most of information in this document is written to be accessible as stand-alone reference
material. However, before starting your first ZooKeeper application, you should probably at
least read the chaptes on the ZooK eeper Data M odel and ZooK eeper Basic Operations. Also,
the Simple Programmming Example [thd] is helpful for understanding the basic structure of
a ZooK eeper client application.

2. The ZooK egper Data M odel

ZooK eeper has a hierarchal name space, much like a distributed file system. The only
difference is that each node in the namespace can have data associated with it aswell as
children. It islike having afile system that allows afile to aso be adirectory. Paths to nodes
are always expressed as canonical, absolute, slash-separated paths; there are no relative
reference. Any unicode character can be used in a path subject to the following constraints:

e Thenull character (\uO000) cannot be part of a path name. (This causes problems with the

Page 3

ZooKeeper Programmer's Guide

C binding.)
» Thefollowing characters can't be used because they don't display well, or render in
confusing ways: \u0001 - \u0019 and \uOO7F - \uUOO9F.

« Thefollowing characters are not allowed: \ud800 -uF8FFF, \uFFFO-uFFFF, \uX FFFE -
\UXFFFF (where X isadigit 1 - E), \uF0000 - \uFFFFF.

« The"." character can be used as part of another name, but "." and ".." cannot alone be
used to indicate a node along a path, because ZooK eeper doesn't use relative paths. The
following would be invalid: "/alb/./c" or "/albl../c".

» Thetoken "zookeeper" isreserved.

2.1. ZNodes

Every node in a ZooK eeper treeis referred to as a znode. Znodes maintain a stat structure
that includes version numbers for data changes, acl changes. The stat structure also has
timestamps. The version number, together with the timestamp allow ZooK eeper to validate
the cache and to coordinate updates. Each time a znode's data changes, the version number
increases. For instance, whenever aclient retrieves data, it also receives the version of the
data. And when aclient performs an update or a delete, it must supply the version of the data
of the znode it is changing. If the version it supplies doesn't match the actual version of the
data, the update will fail. (This behavior can be overridden. For more information see...
)[thd...]

In distributed application engineering, the word node can refer to a generic host machine, a server, a member of an ensemble, a
client process, etc. In the ZooK eeper documentatin, znodes refer to the data nodes. Serversto refer to machines that make up
the ZooK eeper service; quorum peers refer to the servers that make up an ensemble; client refers to any host or process which
uses a ZooK eeper service.

Znodes are the main enitity that a programmer access. They have several characteristics that
are worth mentioning here.

2.1.1. Watches

Clients can set watches on znodes. Changes to that znode trigger the watch and then clear the
watch. When awatch triggers, ZooK eeper sends the client a notification. More information
about watches can be found in the section ZooK eeper Watches.

2.1.2. Data Access

Page 4

ZooKeeper Programmer's Guide

The data stored at each znode in a namespace is read and written atomically. Reads get al the
data bytes associated with a znode and a write replaces all the data. Each node has an Access
Control List (ACL) that restricts who can do what.

ZooK eeper was not designed to be a general database or large object store. Instead, it
manages coordination data. This data can come in the form of configuration, status
information, rendezvous, etc. A common property of the various forms of coordination data
isthat they are relatively small: measured in kilobytes. The ZooK eeper client and the server
implementations have sanity checks to ensure that znodes have less than 1M of data, but the
data should be much less than that on average. Operating on relatively large data sizes will
cause some operations to take much more time than others and will affect the latencies of
some operations because of the extra time needed to move more data over the network and
onto storage media. If large data storage is needed, the usually pattern of dealing with such
dataisto storeit on abulk storage system, such as NFS or HDFS, and store pointersto the
storage locations in ZooK eeper.

2.1.3. Ephemeral Nodes

ZooK eeper aso has the notion of ephemeral nodes. These znodes exists aslong as the
session that created the znode is active. When the session ends the znode is deleted. Because
of this behavior ephemeral znodes are not allowed to have children.

2.1.4. Sequence Nodes -- Unique Naming

When creating a znode you can also request that ZooK eeper append a monotonicly
increasing counter to the end of path. This counter is unique to the parent znode. The counter
has aformat of %010d -- that is 10 digits with O (zero) padding (the counter is formatted in
thisway to simplify sorting), i.e. "<path>0000000001". See Queue Recipe for an example
use of thisfeature. Note: the counter used to store the next sequence number isasigned int
(4bytes) maintained by the parent node, the counter will overflow when incremented beyond
2147483647 (resulting in a name "<path>-2147483647").

2.2. Timein ZooK eeper

ZooK eeper tracks time multiple ways:
o Zxid

Every change to the ZooK eeper state receives a stamp in the form of a zxid (ZooK eeper
Transaction Id). This exposes the total ordering of all changes to ZooK eeper. Each
change will have aunique zxid and if zxidl is smaller than zxid2 then zxid1 happened
before zxid2.

Page 5

recipes.html#sc_recipes_Queues

ZooKeeper Programmer's Guide

Version numbers

Every change to aanode will cause an increase to one of the version numbers of that
node. The three version numbers are version (number of changes to the data of a znode),
cversion (number of changes to the children of a znode), and aversion (number of
changesto the ACL of aznode).

Ticks

When using multi-server ZooK eeper, servers use ticks to define timing of events such as
status uploads, session timeouts, connection timeouts between peers, etc. Thetick timeis
only indirectly exposed through the minimum session timeout (2 times the tick time); if a
client requests a session timeout less than the minimum session timeout, the server will
tell the client that the session timeout is actually the minimum session timeout.

Real time

ZooK eeper doesn't use real time, or clock time, at all except to put timestamps into the
stat structure on znode creation and znode modification.

2.3. ZooK eeper Stat Structure

The Stat structure for each znode in ZooK eeper is made up of the following fields:

czxid
The zxid of the change that caused this znode to be created.
mzxid

The zxid of the change that last modified this znode.
ctime

The time in milliseconds from epoch when this znode was created.
mtime

The time in milliseconds from epoch when this znode was last modified.
version

The number of changes to the data of this znode.
cversion

The number of changes to the children of this znode.
aversion

Page 6

ZooKeeper Programmer's Guide

The number of changes to the ACL of this znode.

e ephemeralOwner
The session id of the owner of this znode if the znode is an ephemeral node. If itisnot an
ephemeral node, it will be zero.

« dataLength

The length of the datafield of this znode.
e numcChildren

The number of children of this znode.

3. ZooK egper Sessions

A ZooKeeper client establishes a session with the ZooK eeper service by creating a handle to
the service using alanguage binding. Once created, the handle starts of in the
CONNECTING state and the client library tries to connect to one of the servers that make up
the ZooK eeper service at which point it switches to the CONNECTED state. During normal
operation will be in one of these two states. If an unrecoverable error occurs, such as session
expiration or authentication failure, or if the application explicitly closes the handle, the
handle will move to the CLOSED state. The following figure shows the possible state
transitions of a ZooK eeper client:

Page 7

AUTH_FAILED event
pending requests
retum AUTH_FAILED)

CONMNECTING
requests queued

ZooKeeper Programmer's Guide

CONMNECTED event

[Ler

DISCONNECTED event
pending requests

retum CONNECTION LOSS
SESSION_ =
EXPIRED close called close called
event, pending pending
pending requests requests
operations retum retum
retum CONNECTION CONNECTION_
SESSION_ LOSS LOSS
EXPIRED

AUTH_FAILED
requests refum
AUTH_FAILED

CLOSE
requests retum SESSION_EXPIRED

To create a client session the application code must provide a connection string containing a
comma separated list of host:port pairs, each corresponding to a ZooK eeper server (e.g.
"127.0.0.1:4545" or "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002"). The ZooK eeper client
library will pick an arbitrary server and try to connect to it. If this connection fails, or if the
client becomes disconnected from the server for any reason, the client will automatically try
the next server in thelist, until a connection is (re-)established.

Added in 3.2.0: An optional "chroot" suffix may also be appended to the connection string.
Thiswill run the client commands while interpreting all paths relative to this root (similar to
the unix chroot command). If used the example would look like: "127.0.0.1:4545/app/a" or
"127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002/app/a" where the client would be rooted at
"/app/a’ and all paths would be relative to this root - ie getting/setting/etc... "/foo/bar" would
result in operations being run on "/app/alfoo/bar" (from the server perspective). This feature
is particularly useful in multi-tenant environments where each user of a particular ZooK eeper
service could be rooted differently. This makes re-use much simpler as each user can code
his’her application asif it wererooted at "/", while actual location (say /app/a) could be
determined at deployment time.

When a client gets a handle to the ZooK eeper service, ZooK eeper creates a ZooK eeper
session, represented as a 64-bit number, that it assignsto the client. If the client connectsto a
different ZooK eeper server, it will send the session id as a part of the connection handshake.

Page 8

ZooKeeper Programmer's Guide

As a security measure, the server creates a password for the session id that any ZooK eeper
server can validate. The password is sent to the client with the session id when the client
establishes the session. The client sends this password with the session id whenever it
reestablishes the session with anew server.

One of the parameters to the ZooK eeper client library call to create a ZooK eeper session is
the session timeout in milliseconds. The client sends a requested timeout, the server responds
with the timeout that it can give the client. The current implementation requires that the
timeout be aminimum of 2 times the tickTime (as set in the server configuration) and a
maximum of 20 times the tick Time.

Another parameter to the ZooK eeper session establishment call is the default watcher.
Watchers are notified when any state change occursin the client. For exampleif the client
loses connectivity to the server the client will be notified, or if the client's session expires,
etc... Thiswatcher should consider theinitial state to be disconnected (i.e. before any state
changes events are sent to the watcher by the client lib). In the case of a new connection, the
first event sent to the watcher is typically the session connection event.

The session is kept alive by requests sent by the client. If the sessionisidle for a period of
time that would timeout the session, the client will send a PING request to keep the session
alive. This PING request not only allows the ZooK eeper server to know that the client is still
active, but it also allows the client to verify that its connection to the ZooK eeper server is still
active. The timing of the PING is conservative enough to ensure reasonable time to detect a
dead connection and reconnect to a new server.

Once a connection to the server is successfully established (connected) there are basically
two cases where the client lib generates connectionl oss (the result code in ¢ binding,
exception in Java -- see the APl documentation for binding specific details) when either a
synchronous or asynchronous operation is performed and one of the following holds:

1. The application calls an operation on a session that is no longer aive/valid

2. The ZooKeeper client disconnects from a server when there are pending operations to
that server, i.e., thereis a pending asynchronous call.

4. ZooK eeper Watches

All of the read operationsin ZooK eeper - getData(), getChildren(), and exists() - have the
option of setting awatch as a side effect. Here is ZooK eeper's definition of awatch: awatch
event is one-time trigger, sent to the client that set the watch, which occurs when the data for
which the watch was set changes. There are three key points to consider in this definition of a
watch:

* Onetimetrigger

Page 9

ZooKeeper Programmer's Guide

One watch event will be sent to the client the data has changed. For example, if aclient
does a getData("/znodel", true) and later the data for /znodel is changed or deleted, the
client will get awatch event for /znodel. If /znodel changes again, no watch event will

be sent unless the client has done another read that sets a new watch.

Sent to theclient

Thisimplies that an event is on the way to the client, but may not reach the client before
the successful return code to the change operation reaches the client that initiated the
change. Watches are sent asynchronously to watchers. ZooK eeper provides an ordering
guarantee: aclient will never see a change for which it has set awatch until it first sees
the watch event. Network delays or other factors may cause different clients to see
watches and return codes from updates at different times. The key point is that everything
seen by the different clients will have a consistent order.

Thedatafor which the watch was set

Thisrefersto the different ways anode can change. It helps to think of ZooK eeper as
maintaining two lists of watches: data watches and child watches. getData() and exists()
set data watches. getChildren() sets child watches. Alternatively, it may help to think of
watches being set according to the kind of data returned. getData() and exists() return
information about the data of the node, whereas getChildren() returns alist of children.
Thus, setData() will trigger data watches for the znode being set (assuming the set is
successful). A successful create() will trigger a datawatch for the znode being created
and a child watch for the parent znode. A successful delete() will trigger both adata
watch and a child watch (since there can be no more children) for a znode being deleted
aswell asachild watch for the parent znode.

Watches are maintained locally at the ZooK eeper server to which the client is connected.
This allows watches to be light weight to set, maintain, and dispatch. When a client connects
to anew server, the watch will be triggered for any session events. Watches will not be
received while disconnected from a server. When a client reconnects, any previously
registered watches will be reregistered and triggered if needed. In general thisall occurs
transparently. There is one case where awatch may be missed: awatch for the existance of a
znode not yet created will be missed if the znode is created and del eted while disconnected.

4.1. What ZooK egper Guar antees about Watches

With regard to watches, ZooK eeper maintains these guarantees:

Watches are ordered with respect to other events, other watches, and asynchronous
replies. The ZooK eeper client libraries ensures that everything is dispatched in order.

Page 10

ZooKeeper Programmer's Guide

» A client will see awatch event for aznode it is watching before seeing the new data that
corresponds to that znode.

» Theorder of watch events from ZooK eeper corresponds to the order of the updates as
seen by the ZooK eeper service.

4.2. Thingsto Remember about Watches

« Watches are onetime triggers, if you get awatch event and you want to get notified of
future changes, you must set another watch.

» Because watches are one time triggers and there is latency between getting the event and
sending a new request to get awatch you cannot reliably see every change that happens
to anode in ZooK eeper. Be prepared to handle the case where the znode changes
multiple times between getting the event and setting the watch again. (Y ou may not care,
but at |east realize it may happen.)

« A watch object, or function/context pair, will only be triggered once for a given
notification. For example, if the same watch object is registered for an existsand a
getData call for the same file and that file is then deleted, the watch object would only be
invoked once with the deletion notification for the file.

« When you disconnect from a server (for example, when the server fails), you will not get
any watches until the connection is reestablished. For this reason session events are sent
to all outstanding watch handlers. Use session events to go into a safe mode: you will not
be receiving events while disconnected, so your process should act conservatively in that
mode.

5. ZooK eeper access control using ACLs

ZooK egper uses ACL s to control access to its znodes (the data nodes of a ZooK eeper data
tree). The ACL implementation is quite similar to UNIX file access permissions: it employs
permission bits to allow/disallow various operations against a node and the scope to which
the bits apply. Unlike standard UNIX permissions, a ZooK eeper node is not limited by the
three standard scopes for user (owner of the file), group, and world (other). ZooK eeper does
not have a notion of an owner of aznode. Instead, an ACL specifies sets of ids and
permissions that are associated with those ids.

Note also that an ACL pertains only to a specific znode. In particular it does not apply to
children. For example, if /app is only readable by ip:172.16.16.1 and /app/status is world
readable, anyone will be able to read /app/status; ACLs are not recursive.

Page 11

ZooKeeper Programmer's Guide

ZooK eeper supports pluggable authentication schemes. Ids are specified using the form
scheme:id, where scheme is a the authentication scheme that the id corresponds to. For
example, ip:172.16.16.1 isan id for ahost with the address 172.16.16.1.

When a client connects to ZooK eeper and authenticates itself, ZooK eeper associates all the
ids that correspond to a client with the clients connection. These ids are checked against the
ACLs of znodes when aclients tries to access anode. ACL s are made up of pairs of
(scheme: expression, perms). The format of the expression is specific to the scheme. For
example, the pair (ip:19.22.0.0/16, READ) gives the READ permission to any clients with an
|P address that starts with 19.22.

5.1. ACL Permissions

ZooK eeper supports the following permissions:

« CREATE: you can create a child node

» READ: you can get data from anode and list its children.
« WRITE: you can set datafor a node

« DELETE: you can delete a child node

 ADMIN: you can set permissions

The CREATE and DELETE permissions have been broken out of the WRITE permission for
finer grained access controls. The cases for CREATE and DELETE are the following:

You want A to be able to do a set on a ZooK eegper node, but not be able to CREATE or
DELETE children.

CREATE without DELETE: clients create requests by creating ZooK eeper nodes in a parent
directory. You want all clientsto be able to add, but only request processor can delete. (This
iskind of like the APPEND permission for files.)

Also, the ADMIN permission is there since ZooK eeper doesn’t have anotion of file owner. In
some sense the ADMIN permission designates the entity as the owner. ZooK eeper doesn’t
support the LOOKUP permission (execute permission bit on directories to allow you to

L OOKUP even though you can't list the directory). Everyone implicitly has LOOKUP
permission. This allows you to stat a node, but nothing more. (The problemis, if you want to
call zoo_exists() on anode that doesn't exist, thereis no permission to check.)

5.1.1. Builtin ACL Schemes

ZooK eeeper has the following built in schemes:

Page 12

ZooKeeper Programmer's Guide

« world hasasingleid, anyone, that represents anyone.
e auth doesn't use any id, represents any authenticated user.

« digest uses ausername: password string to generate MD5 hash which is then used as an
ACL ID identity. Authentication is done by sending the username: password in clear text.
When used in the ACL the expression will be the username: base64 encoded SHAL
password digest.

o ipusestheclient host IPasan ACL ID identity. The ACL expression isof the form
addr/bits where the most significant bits of addr are matched against the most significant
bits of the client host IP.

5.1.2. ZooK eeper C client API

The following constants are provided by the ZooKeeper C library:

e constint ZOO_PERM_READ; //can read node’ s value and list its children
e constint ZOO_PERM_WRITE;// can set the node’ s value

e constint ZOO PERM_ CREATE; //can create children

e constint ZOO_PERM_DELETE;// can delete children

e constint ZOO_PERM_ADMIN; //can execute set_acl()

e constint ZOO_PERM_ALL;// dl of the above flags OR'’ d together

The following are the standard ACL IDs:
e struct IdZOO_ANYONE_ID_UNSAFE; //(‘world’, anyone’)
e struct IdZOO_AUTH_IDS;// (‘auth’,’”)

ZOO_AUTH_IDS empty identity string should be interpreted as “the identity of the creator”.

ZooK eeper client comes with three standard ACLs:

e struct ACL_vector ZOO_OPEN_ACL_UNSAFE;
/[(ZOO_PERM_ALL,ZOO_ANYONE_ID_UNSAFE)

. druct ACL_vector ZOO READ ACL_UNSAFE;// (ZOO_PERM_READ,
Z0OO_ANYONE_ID_UNSAFE)

o gtruct ACL_vector ZOO_CREATOR_ALL_ACL;
1[(ZOO_PERM_ALL,ZOO_AUTH_IDS)

The ZOO_OPEN_ACL_UNSAFE is completely open free for all ACL: any application can
execute any operation on the node and can create, list and delete its children. The

Page 13

ZooKeeper Programmer's Guide

Z0O0O _READ_ACL_UNSAFE isread-only access for any application. CREATE _ALL_ACL
grants all permissionsto the creator of the node. The creator must have been authenticated by
the server (for example, using “digest” scheme) before it can create nodes with this ACL.

The following ZooK eeper operations deal with ACLS:

e intzoo_add auth (zhandle t * zh,const char* scheme,const char* cert, int certLen,
void_completion_t completion, const void * data);

The application uses the zoo_add_auth function to authenticate itself to the server. The
function can be called multiple timesif the application wants to authenticate using different
schemes and/or identities.

e int zoo_create (zhandle t *zh, const char *path, const char *value,int valuelen, const
struct ACL_vector *acl, int flags,char *realpath, int max_realpath_|en);

z0o_create(...) operation creates a new node. The acl parameter isalist of ACLs associated
with the node. The parent node must have the CREATE permission bit set.

e intzoo _get acl (zhandle t *zh, const char *path,struct ACL_vector *acl, struct Stat
* stat);

This operation returns anode’s ACL info.

e intzoo _set acl (zhandle t *zh, const char *path, int version,const struct ACL_vector
*acl);

This function replaces node’s ACL list with a new one. The node must have the ADMIN
permission set.

Here is a sample code that makes use of the above APIs to authenticate itself using the “foo
scheme and create an ephemeral node “/xyz” with create-only permissions.

Thisisavery simple example which is intended to show how to interact with ZooK eeper ACL s specifically. See
.../trunk/src/cl/src/cli.c foranexampleof aproper C client implementation

#i ncl ude <string. h>
#i ncl ude <errno. h>

#i ncl ude "zookeeper. h"

static zhandle_ t *zh;

Page 14

ZooKeeper Programmer's Guide

Page 15
Copyright © 2008 The Apache Software Foundation. All rights reserved.

ZooKeeper Programmer's Guide

6. Pluggable ZooK eeper authentication

ZooKeeper runsin avariety of different environments with various different authentication
schemes, so it has a completely pluggable authentication framework. Even the builtin
authentication schemes use the pluggable authentication framework.

To understand how the authentication framework works, first you must understand the two
main authentication operations. The framework first must authenticate the client. Thisis
usually done as soon as the client connects to a server and consists of validating information
sent from or gathered about a client and associating it with the connection. The second
operation handled by the framework is finding the entries in an ACL that correspond to
client. ACL entries are <idspec, permissions> pairs. The idspec may be a simple string match
against the authentication information associated with the connection or it may be a
expression that is evaluated against that information. It is up to the implementation of the
authentication plugin to do the match. Here is the interface that an authentication plugin must
implement:

public interface AuthenticationProvider {

String get Schene();

Keeper Excepti on. Code handl eAut henti cati on(Server Cnxn cnxn, byte
aut hData[]);

bool ean isValid(String id);

bool ean matches(String id, String acl Expr);

bool ean i sAut henti cated();

}

The first method getScheme returns the string that identifies the plugin. Because we support
multiple methods of authentication, an authentication credential or an idspec will always be
prefixed with scheme:. The ZooK eeper server uses the scheme returned by the authentication
plugin to determine which ids the scheme applies to.

handleAuthentication is called when a client sends authentication information to be
associated with a connection. The client specifies the scheme to which the information
corresponds. The ZooK eeper server passes the information to the authentication plugin
whose getScheme matches the scheme passed by the client. The implementor of
handleAuthentication will usually return an error if it determines that the information is bad,
or it will associate information with the connection using cnxn.getAuthlnfo().add(new

|d(getScheme(), data)).

The authentication plugin isinvolved in both setting and using ACLs. When an ACL is set
for aznode, the ZooK eeper server will pass the id part of the entry to the isValid(String id)
method. It is up to the plugin to verify that the id has a correct form. For example,

Page 16

ZooKeeper Programmer's Guide

ip:172.16.0.0/16 isavalid id, but ip:host.comis not. If the new ACL includes an "auth"
entry, isAuthenticated is used to see if the authentication information for this schemethat is
assocatied with the connection should be added to the ACL. Some schemes should not be
included in auth. For example, the | P address of the client is not considered as an id that
should be added to the ACL if auth is specified.

ZooK eeper invokes matches(String id, Sring aclExpr) when checking an ACL. It needs to
match authentication information of the client against the relevant ACL entries. To find the
entries which apply to the client, the ZooK eeper server will find the scheme of each entry
and if there is authentication information from that client for that scheme, matches(String id,
String aclExpr) will be called with id set to the authentication information that was
previously added to the connection by handleAuthentication and aclExpr set to theid of the
ACL entry. The authentication plugin uses its own logic and matching scheme to determine
if idisincluded in aclExpr.

There are two built in authentication plugins: ip and digest. Additional plugins can adding
using system properties. At startup the ZooK eeper server will look for system properties that
start with "zookeeper.authProvider." and interpret the value of those properties as the class
name of an authentication plugin. These properties can be set using the

-Dzookeeeper .authProvider.X=com.f. MyAuth or adding entries such as the following in the
server configuration file:

aut hProvi der. 1=com f. MyAut h
aut hProvi der. 2=com f. MyAut h2

Care should be taking to ensure that the suffix on the property isunique. If there are
duplicates such as -Dzookeeeper.authProvider . X=com.f.MyAuth

-Dzookeeper .authProvider . X=com.f.MyAuth2, only one will be used. Also all servers must
have the same plugins defined, otherwise clients using the authentication schemes provided
by the plugins will have problems connecting to some servers.

7. Consistency Guar antees

ZooK eeper is ahigh performance, scalable service. Both reads and write operations are
designed to be fast, though reads are faster than writes. The reason for thisisthat in the case
of reads, ZooK eeper can serve older data, which in turn is due to ZooK eeper's consistency
guarantees:

Sequential Consistency
Updates from a client will be applied in the order that they were sent.
Atomicity

Page 17

ZooKeeper Programmer's Guide

Updates either succeed or fail -- there are no partial results.

Single System Image

A client will see the same view of the service regardless of the server that it connects to.
Reliability

Once an update has been applied, it will persist from that time forward until a client
overwrites the update. This guarantee has two corollaries:

1. If aclient gets asuccessful return code, the update will have been applied. On some
failures (communication errors, timeouts, etc) the client will not know if the update
has applied or not. We take steps to minimize the failures, but the only guaranteeis
only present with successful return codes. (Thisis called the monotonicity condition
in Paxos.)

2. Any updates that are seen by the client, through aread request or successful update,
will never be rolled back when recovering from server failures.

Timeliness

The clients view of the system is guaranteed to be up-to-date within a certain time bound.
(On the order of tens of seconds.) Either system changes will be seen by a client within
this bound, or the client will detect a service outage.

Using these consistency guaranteesit is easy to build higher level functions such as leader
election, barriers, queues, and read/write revocable locks solely at the ZooK eeper client (no
additions needed to ZooK eeper). See Recipes and Solutions for more details.

Sometimes devel opers mistakenly assume one other guarantee that ZooK eeper does not in fact make. Thisis:
Simultaneously Conistent Cross-Client Views

ZooK eeper does not guarantee that at every instance in time, two different clients will have identical views of ZooK eeper
data. Due to factors like network delays, one client may perform an update before another client gets notified of the
change. Consider the scenario of two clients, A and B. If client A setsthe value of a znode /afrom 0to 1, then tells client
B to read /a, client B may read the old value of 0, depending on which server it is connected to. If it isimportant that
Client A and Client B read the same value, Client B should should call the sync() method from the ZooK eeper API
method before it performsiits read.

So, ZooK eeper by itself doesn't guarantee that changes occur synchronously across all servers, but ZooK eeper primitives
can be used to construct higher level functions that provide useful client synchronization. (For more information, see the

ZooK eeper Recipes. [thd:..]).

8. Bindings

The ZooK eeper client libraries come in two languages: Java and C. The following sections
describe these.

Page 18

recipes.html
recipes.html

ZooKeeper Programmer's Guide

8.1. Java Binding

There are two packages that make up the ZooK eeper Java binding: or g.apache.zook eeper
and or g.apache.zookeeper .data. The rest of the packages that make up ZooK eeper are used
internally or are part of the server implementation. The or g.apache.zookeeper .data package
is made up of generated classes that are used ssmply as containers.

The main class used by a ZooK eeper Javaclient isthe ZooK eeper class. Itstwo constructors
differ only by an optional session id and password. ZooK eeper supports session recovery
accross instances of aprocess. A Java program may save its session id and password to stable
storage, restart, and recover the session that was used by the earlier instance of the program.

When a ZooK eeper object is created, two threads are created as well: an 10 thread and an
event thread. All 10 happens on the 10 thread (using Java NIO). All event callbacks happen
on the event thread. Session maintenance such as reconnecting to ZooK eeper servers and
maintaining heartbeat is done on the 10 thread. Responses for synchronous methods are also
processed in the 10 thread. All responses to asynchronous methods and watch events are
processed on the event thread. There are afew things to notice that result from this design:

e All completions for asynchronous calls and watcher callbacks will be made in order, one
at atime. The caller can do any processing they wish, but no other callbacks will be
processed during that time.

» Calbacks do not block the processing of the 10 thread or the processing of the
synchronous calls.

« Synchronous calls may not return in the correct order. For example, assume a client does
the following processing: issues an asynchronous read of node /a with watch set to true,
and then in the compl etion callback of the read it does a synchronous read of /a. (Maybe
not good practice, but not illegal either, and it makes for a simple example.)

Note that if there is a change to /a between the asynchronous read and the synchronous
read, the client library will receive the watch event saying /a changed before the response
for the synchronous read, but because the completion callback is blocking the event
gueue, the synchronous read will return with the new value of /a before the watch event
IS processed.

Finally, the rules associated with shutdown are straightforward: once a ZooK eeper object is
closed or receives afatal event (SESSION_EXPIRED and AUTH_FAILED), the ZooK eeper
object becomesinvalid. On a close, the two threads shut down and any further access on
zookeeper handle is undefined behavior and should be avoided.

8.2. C Binding

Page 19

ZooKeeper Programmer's Guide

The C binding has a single-threaded and multi-threaded library. The multi-threaded library is
easiest to use and is most similar to the Java API. Thislibrary will create an 10 thread and an
event dispatch thread for handling connection maintenance and callbacks. The
single-threaded library allows ZooK egper to be used in event driven applications by exposing
the event loop used in the multi-threaded library.

The package includes two shared libraries: zookeeper_st and zookeeper_mt. The former only
provides the asynchronous APIs and callbacks for integrating into the application's event
loop. The only reason this library existsis to support the platforms were a pthread library is
not available or isunstable (i.e. FreeBSD 4.x). In all other cases, application developers
should link with zookeeper_mt, as it includes support for both Sync and Async API.

8.2.1. Installation

If you're building the client from a check-out from the Apache repository, follow the steps
outlined below. If you're building from a project source package downloaded from apache,
skip to step 3.

1. Runant conpil e_j ut e from the ZooKeeper top level directory (. . . / t r unk).
Thiswill create adirectory named "generated” under . . . / trunk/ src/ c.

2. Changedirectory tothe. . . / t runk/ src/ c andrunaut or econf -if tobootstrap
autoconf, automake and libtool. Make sure you have autoconf version 2.59 or greater
installed. Skip to step 4.

3. If you are building from a project source package, unzip/untar the source tarball and cd to
the zookeeper - x. x. X/ sr c/ c directory.

4. Run./configure <your-opti ons> togenerate the makefile. Here are some of
options the configur e utility supports that can be useful in this step:

* --enabl e-debug

Enables optimization and enables debug info compiler options. (Disabled by default.)
 --w thout-syncapi

Disables Sync API support; zookeeper mt library won't be built. (Enabled by

default.)
e« --disable-static

Do not build static libraries. (Enabled by default.)
e --disabl e-shared

Do not build shared libraries. (Enabled by default.)

Page 20

ZooKeeper Programmer's Guide

’ See INSTALL for general information about running configure. ‘

5. Runnmake or make i nstal | tobuildthelibraries and install them.

6. To generate doxygen documentation for the ZooK eeper API, run make
doxygen- doc. All documentation will be placed in anew subfolder named docs. By
default, this command only generates HTML. For information on other document
formats, run. / configure --help

8.2.2. Using the C Client

Y ou can test your client by running a ZooK eeper server (see instructions on the project wiki
page on how to run it) and connecting to it using one of the cli applications that were built as
part of the installation procedure. cli_mt (multithreaded, built against zookeeper_mt library)
is shown in this example, but you could also use cli_st (singlethreaded, built against
zookeeper_st library):

$ cli_m zookeeper host: 9876

Thisisaclient application that gives you a shell for executing simple ZooK egper commands.
Once successfully started and connected to the server it displays a shell prompt. Y ou can now
enter ZooK eeper commands. For example, to create a node:

> create /ny_new _node

To verify that the node's been created:

>|s /

Y ou should see alist of node who are children of the root node "/".

In order to be able to use the ZooKeeper API in your application you have to remember to
1. Include ZooKeeper header: #include <zookeeper/zookeeper.h

2. If you are building a multithreaded client, compile with -DTHREADED compiler flag to
enable the multi-threaded version of the library, and then link against against the
zookeeper_nt library. If you are building a single-threaded client, do not compile with
-DTHREADED, and be sure to link against the zookeeper st library.

Refer to Program Structure, with Simple Example for examples of usage in Javaand C. [tbd]

9. Building Blocks: A Guideto ZooK eeper Oper ations

Page 21

ZooKeeper Programmer's Guide

This section surveys all the operations a developer can perform against a ZooK eeper server.
It islower level information than the earlier concepts chapters in this manual, but higher level
than the ZooK eeper APl Reference. It covers these topics:

e Connecting to ZooK egper

9.1. Handling Errors

Both the Java and C client bindings may report errors. The Java client binding does so by
throwing KeeperException, calling code() on the exception will return the specific error
code. The C client binding returns an error code as defined in the enum ZOO_ERRORS. AP
callbacks indicate result code for both language bindings. See the APl documentation
(javadoc for Java, doxygen for C) for full details on the possible errors and their meaning.

9.2. Connecting to ZooK eeper

9.3. Read Operations

9.4. Write Oper ations

9.5. Handling Watches

9.6. Miscelleaneous ZooK eeper Oper ations

10. Program Structure, with Simple Example
[tbd]

11. Gotchas: Common Problems and Troubleshooting

So now you know ZooK eeper. It's fast, ssmple, your application works, but wait ...
something's wrong. Here are some pitfalls that ZooK eeper usersfall into:

1. If you are using watches, you must ook for the connected watch event. When a
ZooK eeper client disconnects from a server, you will not receive notification of changes
until reconnected. If you are watching for a znode to come into existance, you will miss
the event if the znode is created and deleted while you are disconnected.

Page 22

ZooKeeper Programmer's Guide

2. You must test ZooK eeper server failures. The ZooK eeper service can survive failures as
long as amajority of servers are active. The question to ask is: can your application
handleit? In the real world aclient's connection to ZooK eeper can break. (ZooK eeper
server failures and network partitions are common reasons for connection loss.) The
ZooK eeper client library takes care of recovering your connection and letting you know
what happened, but you must make sure that you recover your state and any outstanding
requests that failed. Find out if you got it right in the test lab, not in production - test with
a ZooK eeper service made up of a several of servers and subject them to reboots.

3. Thelist of ZooKeeper servers used by the client must match the list of ZooK eeper servers
that each ZooK eeper server has. Things can work, although not optimally, if the client list
isasubset of thereal list of ZooK eeper servers, but not if the client lists ZooK eeper
servers not in the ZooK eeper cluster.

4. Be careful where you put that transaction log. The most performance-critical part of
ZooK eeper isthe transaction log. ZooK eeper must sync transactions to media before it
returns aresponse. A dedicated transaction log deviceis key to consistent good
performance. Putting the log on a busy device will adversely effect performance. If you
only have one storage device, put trace files on NFS and increase the snapshotCount; it
doesn't eliminate the problem, but it can mitigate it.

5. Set your Javamax heap size correctly. It isvery important to avoid swapping. Going to
disk unnecessarily will amost certainly degrade your performance unacceptably.
Remember, in ZooK eeper, everything is ordered, so if one request hits the disk, all other
gueued requests hit the disk.

To avoid swapping, try to set the heapsize to the amount of physical memory you have,
minus the amount needed by the OS and cache. The best way to determine an optimal
heap size for your configurationsisto run load tests. If for some reason you can't, be
conservative in your estimates and choose a number well below the limit that would
cause your machine to swap. For example, on a4G machine, a 3G heap is a conservative
estimate to start with.

Outside the formal documentation, there're several other sources of information for
ZooK eeper developers.
ZooKeeper Whitepaper [tbd: find url]
The definitive discussion of ZooKeeper design and performance, by Y ahoo! Research
API Reference [tbd: find url]
The complete reference to the ZooK eeper API
ZooKeeper Talk at the Hadoup Summit 2008
A video introduction to ZooK eeper, by Benjamin Reed of Y ahoo! Research

Page 23

http://us.dl1.yimg.com/download.yahoo.com/dl/ydn/zookeeper.m4v

ZooKeeper Programmer's Guide

Barrier and Queue Tutorial

The excellent Java tutorial by Flavio Junqueira, implementing simple barriers and
producer-consumer queues using ZooK eeper.

ZooKeeper - A Reliable, Scalable Distributed Coordination System
An article by Todd Hoff (07/15/2008)
ZooKeeper Recipes

Pseudo-level discussion of the implementation of various synchronization solutions with
ZooK eeper: Event Handles, Queues, Locks, and Two-phase Commits.

[tbd]
Any other good sources anyone can think of...

Page 24

http://wiki.apache.org/hadoop/ZooKeeper/Tutorial
http://wiki.apache.org/hadoop/ZooKeeper/ZooKeeperArticles
recipes.html

	1 Introduction
	2 The ZooKeeper Data Model
	2.1 ZNodes
	2.1.1 Watches
	2.1.2 Data Access
	2.1.3 Ephemeral Nodes
	2.1.4 Sequence Nodes -- Unique Naming

	2.2 Time in ZooKeeper
	2.3 ZooKeeper Stat Structure

	3 ZooKeeper Sessions
	4 ZooKeeper Watches
	4.1 What ZooKeeper Guarantees about Watches
	4.2 Things to Remember about Watches

	5 ZooKeeper access control using ACLs
	5.1 ACL Permissions
	5.1.1 Builtin ACL Schemes
	5.1.2 ZooKeeper C client API

	6 Pluggable ZooKeeper authentication
	7 Consistency Guarantees
	8 Bindings
	8.1 Java Binding
	8.2 C Binding
	8.2.1 Installation
	8.2.2 Using the C Client

	9 Building Blocks: A Guide to ZooKeeper Operations
	9.1 Handling Errors
	9.2 Connecting to ZooKeeper
	9.3 Read Operations
	9.4 Write Operations
	9.5 Handling Watches
	9.6 Miscelleaneous ZooKeeper Operations

	10 Program Structure, with Simple Example
	11 Gotchas: Common Problems and Troubleshooting

