
ZooKeeper Administrator's Guide

A Guide to Deployment and Administration

by

Table of contents

1 Deployment..2

1.1 System Requirements.. 2

1.2 Clustered (Multi-Server) Setup... 2

1.3 Single Server and Developer Setup...4

2 Administration... 4

2.1 Designing a ZooKeeper Deployment.. 4

2.2 Provisioning...6

2.3 Things to Consider: ZooKeeper Strengths and Limitations.. 6

2.4 Administering.. 6

2.5 Monitoring...6

2.6 Logging..6

2.7 Troubleshooting...6

2.8 Configuration Parameters..6

2.9 ZooKeeper Commands: The Four Letter Words...10

2.10 Data File Management...11

2.11 Things to Avoid... 12

2.12 Best Practices...13

Copyright © 2008 The Apache Software Foundation. All rights reserved.

1. Deployment

This section contains information about deploying Zookeeper and covers these topics:

• System Requirements

• Clustered (Multi-Server) Setup

• Single Server and Developer Setup

The first two sections assume you are interested in installing ZooKeeper in a production
environment such as a datacenter. The final section covers situations in which you are setting
up ZooKeeper on a limited basis - for evaluation, testing, or development - but not in a
production environment.

1.1. System Requirements

ZooKeeper runs in Java, release 1.5 or greater (JDK 5 or greater). It runs as an ensemble of
ZooKeeper servers. Three ZooKeeper servers is the minimum recommended size for an
ensemble, and we also recommend that they run on separate machines. At Yahoo!,
ZooKeeper is usually deployed on dedicated RHEL boxes, with dual-core processors, 2GB of
RAM, and 80GB IDE hard drives.

1.2. Clustered (Multi-Server) Setup

For reliable ZooKeeper service, you should deploy ZooKeeper in a cluster known as an
ensemble. As long as a majority of the ensemble are up, the service will be available.
Because Zookeeper requires a majority, it is best to use an odd number of machines. For
example, with four machines ZooKeeper can only handle the failure of a single machine; if
two machines fail, the remaining two machines do not constitute a majority. However, with
five machines ZooKeeper can handle the failure of two machines.

Here are the steps to setting a server that will be part of an ensemble. These steps should be
performed on every host in the ensemble:

1. Install the Java JDK. You can use the native packaging system for your system, or
download the JDK from:

http://java.sun.com/javase/downloads/index.jsp

2. Set the Java heap size. This is very important to avoid swapping, which will seriously
degrade ZooKeeper performance. To determine the correct value, use load tests, and
make sure you are well below the usage limit that would cause you to swap. Be
conservative - use a maximum heap size of 3GB for a 4GB machine.

ZooKeeper Administrator's Guide

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

http://java.sun.com/javase/downloads/index.jsp

3. Install the ZooKeeper Server Package. It can be downloaded from:

http://hadoop.apache.org/zookeeper/releases.html

4. Create a configuration file. This file can be called anything. Use the following settings as
a starting point:

tickTime=2000 dataDir=/var/zookeeper/ clientPort=2181
initLimit=5 syncLimit=2 server.1=zoo1:2888:3888
server.2=zoo2:2888:3888 server.3=zoo3:2888:3888

You can find the meanings of these and other configuration settings in the section
Configuration Parameters. A word though about a few here:

Every machine that is part of the ZooKeeper ensemble should know about every other
machine in the ensemble. You accomplish this with the series of lines of the form
server.id=host:port:port. The parameters host and port are straightforward. You
attribute the server id to each machine by creating a file named myid, one for each
server, which resides in that server's data directory, as specified by the configuration file
parameter dataDir. The myid file consists of a single line containing only the text of that
machine's id. So myid of server 1 would contain the text "1" and nothing else. The id
must be unique within the ensemble.

5. If your configuration file is set up, you can start ZooKeeper:

$ java -cp zookeeper.jar:src/java/lib/log4j-1.2.15.jar:conf
\ org.apache.zookeeper.server.quorum.QuorumPeerMain zoo.cfg

6. Test your deployment by connecting to the hosts:

• In Java, you can run the following command to execute simple operations:

$ java -cp
zookeeper.jar:src/java/lib/log4j-1.2.15.jar:conf \
org.apache.zookeeper.ZooKeeperMain 127.0.0.1:2181

• In C, you can compile either the single threaded client or the multithreaded client: or
n the c subdirectory in the ZooKeeper sources. This compiles the single threaded
client:

$ make cli_st

And this compiles the mulithreaded client:

$ make cli_mt

Running either program gives you a shell in which to execute simple file-system-like

ZooKeeper Administrator's Guide

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

http://hadoop.apache.org/zookeeper/releases.html

operations. To connect to ZooKeeper with the multithreaded client, for example, you
would run:

$ cli_mt 127.0.0.1:2181

1.3. Single Server and Developer Setup

If you want to setup ZooKeeper for development purposes, you will probably want to setup a
single server instance of ZooKeeper, and then install either the Java or C client-side libraries
and bindings on your development machine.

The steps to setting up a single server instance are the similar to the above, except the
configuration file is simpler. You can find the complete instructions in the Installing and
Running ZooKeeper in Single Server Mode section of the ZooKeeper Getting Started Guide.

For information on installing the client side libraries, refer to the Bindings section of the
ZooKeeper Programmer's Guide.

2. Administration

This section contains information about running and maintaining ZooKeeper and covers
these topics:

• Designing a ZooKeeper Deployment

• Provisioning

• Things to Consider: ZooKeeper Strengths and Limitations

• Administering

• Monitoring

• Logging

• Troubleshooting

• Configuration Parameters

• ZooKeeper Commands: The Four Letter Words

• Data File Management

• Things to Avoid

• Best Practices

2.1. Designing a ZooKeeper Deployment

ZooKeeper Administrator's Guide

Page 4
Copyright © 2008 The Apache Software Foundation. All rights reserved.

zookeeperStarted.html#sc_InstallingSingleMode
zookeeperStarted.html#sc_InstallingSingleMode
zookeeperStarted.html
zookeeperProgrammers.html#Bindings
zookeeperProgrammers.html

The reliablity of ZooKeeper rests on two basic assumptions.

1. Only a minority of servers in a deployment will fail. Failure in this context means a
machine crash, or some error in the network that partitions a server off from the majority.

2. Deployed machines operate correctly. To operate correctly means to execute code
correctly, to have clocks that work properly, and to have storage and network
components that perform consistently.

The sections below contain considerations for ZooKeeper administrators to maximize the
probability for these assumptions to hold true. Some of these are cross-machines
considerations, and others are things you should consider for each and every machine in your
deployment.

2.1.1. Cross Machine Requirements

For the ZooKeeper service to be active, there must be a majority of non-failing machines that
can communicate with each other. To create a deployment that can tolerate the failure of F
machines, you should count on deploying 2xF+1 machines. Thus, a deployment that consists
of three machines can handle one failure, and a deployment of five machines can handle two
failures. Note that a deployment of six machines can only handle two failures since three
machines is not a majority. For this reason, ZooKeeper deployments are usually made up of
an odd number of machines.

To achieve the highest probability of tolerating a failure you should try to make machine
failures independent. For example, if most of the machines share the same switch, failure of
that switch could cause a correlated failure and bring down the service. The same holds true
of shared power circuits, cooling systems, etc.

2.1.2. Single Machine Requirements

If ZooKeeper has to contend with other applications for access to resourses like storage
media, CPU, network, or memory, its performance will suffer markedly. ZooKeeper has
strong durability guarantees, which means it uses storage media to log changes before the
operation responsible for the change is allowed to complete. You should be aware of this
dependency then, and take great care if you want to ensure that ZooKeeper operations aren’t
held up by your media. Here are some things you can do to minimize that sort of degradation:

• ZooKeeper's transaction log must be on a dedicated device. (A dedicated partition is not
enough.) ZooKeeper writes the log sequentially, without seeking Sharing your log device
with other processes can cause seeks and contention, which in turn can cause
multi-second delays.

• Do not put ZooKeeper in a situation that can cause a swap. In order for ZooKeeper to

ZooKeeper Administrator's Guide

Page 5
Copyright © 2008 The Apache Software Foundation. All rights reserved.

function with any sort of timeliness, it simply cannot be allowed to swap. Therefore,
make certain that the maximum heap size given to ZooKeeper is not bigger than the
amount of real memory available to ZooKeeper. For more on this, see Things to Avoid
below.

2.2. Provisioning

2.3. Things to Consider: ZooKeeper Strengths and Limitations

2.4. Administering

2.5. Monitoring

2.6. Logging

ZooKeeper uses log4j version 1.2 as its logging infrastructure. The ZooKeeper default
log4j.properties file resides in the conf directory. Log4j requires that
log4j.properties either be in the working directory (the directory from which
ZooKeeper is run) or be accessible from the classpath.

For more information, see Log4j Default Initialization Procedure of the log4j manual.

2.7. Troubleshooting

2.8. Configuration Parameters

ZooKeeper's behavior is governed by the ZooKeeper configuration file. This file is designed
so that the exact same file can be used by all the servers that make up a ZooKeeper server
assuming the disk layouts are the same. If servers use different configuration files, care must
be taken to ensure that the list of servers in all of the different configuration files match.

2.8.1. Minimum Configuration

Here are the minimum configuration keywords that must be defined in the configuration file:

clientPort
the port to listen for client connections; that is, the port that clients attempt to connect to.

ZooKeeper Administrator's Guide

Page 6
Copyright © 2008 The Apache Software Foundation. All rights reserved.

http://logging.apache.org/log4j/1.2/manual.html#defaultInit

dataDir
the location where ZooKeeper will store the in-memory database snapshots and, unless
specified otherwise, the transaction log of updates to the database.

Note:

Be careful where you put the transaction log. A dedicated transaction log device is key to consistent good performance. Putting
the log on a busy device will adversely effect performance.

tickTime
the length of a single tick, which is the basic time unit used by ZooKeeper, as measured
in milliseconds. It is used to regulate heartbeats, and timeouts. For example, the
minimum session timeout will be two ticks.

2.8.2. Advanced Configuration

The configuration settings in the section are optional. You can use them to further fine tune
the behaviour of your ZooKeeper servers. Some can also be set using Java system properties,
generally of the form zookeeper.keyword. The exact system property, when available, is
noted below.

dataLogDir
(No Java system property)

This option will direct the machine to write the transaction log to the dataLogDir rather
than the dataDir. This allows a dedicated log device to be used, and helps avoid
competition between logging and snaphots.

Note:

Having a dedicated log device has a large impact on throughput and stable latencies. It is highly recommened to dedicate a log
device and set dataLogDir to point to a directory on that device, and then make sure to point dataDir to a directory not
residing on that device.

globalOutstandingLimit
(Java system property: zookeeper.globalOutstandingLimit.)

Clients can submit requests faster than ZooKeeper can process them, especially if there
are a lot of clients. To prevent ZooKeeper from running out of memory due to queued
requests, ZooKeeper will throttle clients so that there is no more than
globalOutstandingLimit outstanding requests in the system. The default limit is 1,000.

preAllocSize

ZooKeeper Administrator's Guide

Page 7
Copyright © 2008 The Apache Software Foundation. All rights reserved.

(Java system property: zookeeper.preAllocSize)

To avoid seeks ZooKeeper allocates space in the transaction log file in blocks of
preAllocSize kilobytes. The default block size is 64M. One reason for changing the size
of the blocks is to reduce the block size if snapshots are taken more often. (Also, see
snapCount).

snapCount
(Java system property: zookeeper.snapCount)

Clients can submit requests faster than ZooKeeper can process them, especially if there
are a lot of clients. To prevent ZooKeeper from running out of memory due to queued
requests, ZooKeeper will throttle clients so that there is no more than
globalOutstandingLimit outstanding requests in the system. The default limit is
1,000.ZooKeeper logs transactions to a transaction log. After snapCount transactions are
written to a log file a snapshot is started and a new transaction log file is started. The
default snapCount is 10,000.

traceFile
(Java system property: requestTraceFile)

If this option is defined, requests will be will logged to a trace file named
traceFile.year.month.day. Use of this option provides useful debugging information, but
will impact performance. (Note: The system property has no zookeeper prefix, and the
configuration variable name is different from the system property. Yes - it's not
consistent, and it's annoying.)

2.8.3. Cluster Options

The options in this section are designed for use with an ensemble of servers -- that is, when
deploying clusters of servers.

electionAlg
(No Java system property)

Election implementation to use. A value of "0" corresponds to the original UDP-based
version, "1" corresponds to the non-authenticated UDP-based version of fast leader
election, "2" corresponds to the authenticated UDP-based version of fast leader election,
and "3" corresponds to TCP-based version of fast leader election. Currently, only 0 and 3
are supported, 3 being the default

initLimit
(No Java system property)

ZooKeeper Administrator's Guide

Page 8
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Amount of time, in ticks (see tickTime), to allow followers to connect and sync to a
leader. Increased this value as needed, if the amount of data managed by ZooKeeper is
large.

leaderServes
(Java system property: zookeeper.leaderServes)

Leader accepts client connections. Default value is "yes". The leader machine coordinates
updates. For higher update throughput at thes slight expense of read throughput the leader
can be configured to not accept clients and focus on coordination. The default to this
option is yes, which means that a leader will accept client connections.

Note:

Turning on leader selection is highly recommended when you have more than three ZooKeeper servers in an ensemble.

server.x=[hostname]:nnnnn[:nnnnn], etc
(No Java system property)

servers making up the ZooKeeper ensemble. When the server starts up, it determines
which server it is by looking for the file myid in the data directory. That file contains the
server number, in ASCII, and it should match x in server.x in the left hand side of this
setting.

The list of servers that make up ZooKeeper servers that is used by the clients must match
the list of ZooKeeper servers that each ZooKeeper server has.

There are two port numbers nnnnn. The first followers use to connect to the leader, and
the second is for leader election. The leader election port is only necessary if electionAlg
is 1, 2, or 3 (default). If electionAlg is 0, then the second port is not necessary. If you
want to test multiple servers on a single machine, then different ports can be used for
each server.

syncLimit
(No Java system property)

Amount of time, in ticks (see tickTime), to allow followers to sync with ZooKeeper. If
followers fall too far behind a leader, they will be dropped.

2.8.4. Unsafe Options

The following options can be useful, but be careful when you use them. The risk of each is

ZooKeeper Administrator's Guide

Page 9
Copyright © 2008 The Apache Software Foundation. All rights reserved.

explained along with the explanation of what the variable does.

forceSync
(Java system property: zookeeper.forceSync)

Requires updates to be synced to media of the transaction log before finishing processing
the update. If this option is set to no, ZooKeeper will not require updates to be synced to
the media.

jute.maxbuffer:
(Java system property: jute.maxbuffer)

This option can only be set as a Java system property. There is no zookeeper prefix on it.
It specifies the maximum size of the data that can be stored in a znode. The default is
0xfffff, or just under 1M. If this option is changed, the system property must be set on all
servers and clients otherwise problems will arise. This is really a sanity check.
ZooKeeper is designed to store data on the order of kilobytes in size.

skipACL
(Java system property: zookeeper.skipACL)

Skips ACL checks. This results in a boost in throughput, but opens up full access to the
data tree to everyone.

2.9. ZooKeeper Commands: The Four Letter Words

ZooKeeper responds to a small set of commands. Each command is composed of four letters.
You issue the commands to ZooKeeper via telnet or nc, at the client port.

dump
Lists the outstanding sessions and ephemeral nodes. This only works on the leader.

envi
Print details about serving environment

kill
Shuts down the server. This must be issued from the machine the ZooKeeper server is
running on.

reqs
List outstanding requests

ruok
Tests if server is running in a non-error state. The server will respond with imok if it is

ZooKeeper Administrator's Guide

Page 10
Copyright © 2008 The Apache Software Foundation. All rights reserved.

running. Otherwise it will not respond at all.

stat
Lists statistics about performance and connected clients.

Here's an example of the ruok command:
$ echo ruok | nc 127.0.0.1 5111
imok

2.10. Data File Management

ZooKeeper stores its data in a data directory and its transaction log in a transaction log
directory. By default these two directories are the same. The server can (and should) be
configured to store the transaction log files in a separate directory than the data files.
Throughput increases and latency decreases when transaction logs reside on a dedicated log
devices.

2.10.1. The Data Directory

This directory has two files in it:

• myid - contains a single integer in human readable ASCII text that represents the server
id.

• snapshot.<zxid> - holds the fuzzy snapshot of a data tree.

Each ZooKeeper server has a unique id. This id is used in two places: the myid file and the
configuration file. The myid file identifies the server that corresponds to the given data
directory. The configuration file lists the contact information for each server identified by its
server id. When a ZooKeeper server instance starts, it reads its id from the myid file and
then, using that id, reads from the configuration file, looking up the port on which it should
listen.

The snapshot files stored in the data directory are fuzzy snapshots in the sense that during
the time the ZooKeeper server is taking the snapshot, updates are occurring to the data tree.
The suffix of the snapshot file names is the zxid, the ZooKeeper transaction id, of the last
committed transaction at the start of the snapshot. Thus, the snapshot includes a subset of the
updates to the data tree that occurred while the snapshot was in process. The snapshot, then,
may not correspond to any data tree that actually existed, and for this reason we refer to it as
a fuzzy snapshot. Still, ZooKeeper can recover using this snapshot because it takes advantage
of the idempotent nature of its updates. By replaying the transaction log against fuzzy
snapshots ZooKeeper gets the state of the system at the end of the log.

ZooKeeper Administrator's Guide

Page 11
Copyright © 2008 The Apache Software Foundation. All rights reserved.

2.10.2. The Log Directory

The Log Directory contains the ZooKeeper transaction logs. Before any update takes place,
ZooKeeper ensures that the transaction that represents the update is written to non-volatile
storage. A new log file is started each time a snapshot is begun. The log file's suffix is the
first zxid written to that log.

2.10.3. File Management

The format of snapshot and log files does not change between standalone ZooKeeper servers
and different configurations of replicated ZooKeeper servers. Therefore, you can pull these
files from a running replicated ZooKeeper server to a development machine with a
stand-alone ZooKeeper server for trouble shooting.

Using older log and snapshot files, you can look at the previous state of ZooKeeper servers
and even restore that state. The LogFormatter class allows an administrator to look at the
transactions in a log.

The ZooKeeper server creates snapshot and log files, but never deletes them. The retention
policy of the data and log files is implemented outside of the ZooKeeper server. The server
itself only needs the latest complete fuzzy snapshot and the log files from the start of that
snapshot. The PurgeTxnLog utility implements a simple retention policy that administrators
can use.

2.11. Things to Avoid

Here are some common problems you can avoid by configuring ZooKeeper correctly:

inconsistent lists of servers
The list of ZooKeeper servers used by the clients must match the list of ZooKeeper
servers that each ZooKeeper server has. Things work okay if the client list is a subset of
the real list, but things will really act strange if clients have a list of ZooKeeper servers
that are in different ZooKeeper clusters. Also, the server lists in each Zookeeper server
configuration file should be consistent with one another.

incorrect placement of transasction log
The most performance critical part of ZooKeeper is the transaction log. ZooKeeper syncs
transactions to media before it returns a response. A dedicated transaction log device is
key to consistent good performance. Putting the log on a busy device will adversely
effect performance. If you only have one storage device, put trace files on NFS and
increase the snapshotCount; it doesn't eliminate the problem, but it should mitigate it.

ZooKeeper Administrator's Guide

Page 12
Copyright © 2008 The Apache Software Foundation. All rights reserved.

incorrect Java heap size
You should take special care to set your Java max heap size correctly. In particular, you
should not create a situation in which ZooKeeper swaps to disk. The disk is death to
ZooKeeper. Everything is ordered, so if processing one request swaps the disk, all other
queued requests will probably do the same. the disk. DON'T SWAP.

Be conservative in your estimates: if you have 4G of RAM, do not set the Java max heap
size to 6G or even 4G. For example, it is more likely you would use a 3G heap for a 4G
machine, as the operating system and the cache also need memory. The best and only
recommend practice for estimating the heap size your system needs is to run load tests,
and then make sure you are well below the usage limit that would cause the system to
swap.

2.12. Best Practices

For best results, take note of the following list of good Zookeeper practices. [tbd...]

ZooKeeper Administrator's Guide

Page 13
Copyright © 2008 The Apache Software Foundation. All rights reserved.

	1 Deployment
	1.1 System Requirements
	1.2 Clustered (Multi-Server) Setup
	1.3 Single Server and Developer Setup

	2 Administration
	2.1 Designing a ZooKeeper Deployment
	2.1.1 Cross Machine Requirements
	2.1.2 Single Machine Requirements

	2.2 Provisioning
	2.3 Things to Consider: ZooKeeper Strengths and Limitations
	2.4 Administering
	2.5 Monitoring
	2.6 Logging
	2.7 Troubleshooting
	2.8 Configuration Parameters
	2.8.1 Minimum Configuration
	2.8.2 Advanced Configuration
	2.8.3 Cluster Options
	2.8.4 Unsafe Options

	2.9 ZooKeeper Commands: The Four Letter Words
	2.10 Data File Management
	2.10.1 The Data Directory
	2.10.2 The Log Directory
	2.10.3 File Management

	2.11 Things to Avoid
	2.12 Best Practices

