
ZooKeeper Getting Started Guide

by

Table of contents

1 Getting Started: Coordinating Distributed Applications with ZooKeeper.........................2

1.1 Installing and Running ZooKeeper in Single Server Mode.. 2

1.2 Connecting to ZooKeeper..3

1.3 Programming to ZooKeeper.. 3

1.4 Running Replicated ZooKeeper.. 3

1.5 Other Optimizations.. 4

Copyright © 2008 The Apache Software Foundation. All rights reserved.

1. Getting Started: Coordinating Distributed Applications with ZooKeeper

This document contains information to get you started quickly with Zookeeper. It is aimed
primarily at developers hoping to try it out, and contains simple installation instructions for a
single ZooKeeper server, a few commands to verify that it is running, and a simple
programming example. Finally, as a convenience, there are a few sections regarding more
complicated installations, for example running replicated deployments, and optimizing the
transaction log. However for the complete instructions for commercial deployments, please
refer to the Zookeeper Administrator's Guide.

1.1. Installing and Running ZooKeeper in Single Server Mode

Setting up a ZooKeeper server in standalone mode is straightforward. The server is contained
in a single JAR file, so installation consists of copying a JAR file and creating a
configuration.

Note:

Zookeeper requires Java 1.5 or more recent.

Once you have downloaded the ZooKeeper source, cd to the root of your ZooKeeper source,
and run "ant jar". For example:

$ cd ~/dev/zookeeper
$ ~/dev/zookeeper/: ant jar

This should generate a JAR file called zookeeper.jar. To start Zookeeper, compile and run
zookeeper.jar.

To start ZooKeeper you need a configuration file. Here is a sample file:

tickTime=2000
dataDir=/var/zookeeper
clientPort=2181

This file can be called anything, but for the sake of this discussion, call it zoo.cfg. Here are
the meanings for each of the fields:

tickTime
the basic time unit in milliseconds used by ZooKeeper. It is used to do heartbeats and the
minimum session timeout will be twice the tickTime.

dataDir
the location to store the in-memory database snapshots and, unless specified otherwise,

ZooKeeper Getting Started Guide

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

zookeeperAdmin.html

the transaction log of updates to the database.

clientPort
the port to listen for client connections

Now that you created the configuration file, you can start ZooKeeper:
java -cp zookeeper-dev.jar:src/java/lib/log4j-1.2.15.jar:conf
org.apache.zookeeper.server.quorum.QuorumPeerMain zoo.cfg

ZooKeeper logs messages using log4j -- more detail available in the Logging section of the
Programmer's Guide. You will see log messages coming to the console and/or a log file
depending on the log4j configuration.

The steps outlined here run ZooKeeper in standalone mode. There is no replication, so if
Zookeeper process fails, the service will go down. This is fine for most development
situations, but to run Zookeeper in replicated mode, please see Running Replicated
Zookeeper.

1.2. Connecting to ZooKeeper

Once ZooKeeper is running, you have several options for connection to it:

• Java: Use java -cp
zookeeper-dev.jar:src/java/lib/log4j-1.2.15.jar:conf
org.apache.zookeeper.ZooKeeperMain 127.0.0.1:2181

This lets you perform simple, file-like operations.

• C: compile cli_mt (multi-threaded) or cli_st (single-threaded) by running make
cli_mt or make cli_st in the c subdirectory in the ZooKeeper sources.

You can run the program using LD_LIBRARY_PATH=. cli_mt 127.0.0.1:2181 or
LD_LIBRARY_PATH=. cli_st 127.0.0.1:2181. This will give you a simple shell to
execute file system like operations on ZooKeeper.

1.3. Programming to ZooKeeper

ZooKeeper has a Java bindings and C bindings. They are functionally equivalent. The C
bindings exist in two variants: single threaded and multi-threaded. These differ only in how
the messaging loop is done. For more information, see the Programming Examples in the
Zookeeper Programmer's Guide for sample code using of the different APIs.

1.4. Running Replicated ZooKeeper

ZooKeeper Getting Started Guide

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

zookeeperProgrammers.html#Logging
zookeeperProgrammers.html#ch_programStructureWithExample.html
zookeeperProgrammers.html#ch_programStructureWithExample.html

Running ZooKeeper in standalone mode is convenient for evaluation, some development,
and testing. But in production, you should run ZooKeeper in replicated mode. A replicated
group of servers in the same application is called a quorum, and in replicated mode, all
servers in the quorum have copies of the same configuration file. The file is similar to the one
used in standalone mode, but with a few differences. Here is an example:

tickTime=2000
dataDir=/var/zookeeper
clientPort=2181
initLimit=5
syncLimit=2
server.1=zoo1:2888:3888
server.2=zoo2:2888:3888
server.3=zoo3:2888:3888

The new entry, initLimit is timeouts ZooKeeper uses to limit the length of time the
Zookeeper servers in quorum have to connect to a leader. The entry syncLimit limits how far
out of date a server can be from a leader.

With both of these timeouts, you specify the unit of time using tickTime. In this example,
the timeout for initLimit is 5 ticks at 2000 milleseconds a tick, or 10 seconds.

The entries of the form server.X list the servers that make up the ZooKeeper service. When
the server starts up, it knows which server it is by looking for the file myid in the data
directory. That file has the contains the server number, in ASCII.

Finally, note the two port numbers after each server name: " 2888" and "3888". Peers use the
former port to connect to other peers. Such a connection is necessary so that peers can
communicate, for example, to agree upon the order of updates. More specifically, a
ZooKeeper server uses this port to connect followers to the leader. When a new leader arises,
a follower opens a TCP connection to the leader using this port. Because the default leader
election also uses TCP, we currently require another port for leader election. This is the
second port in the server entry.

Note:

If you want to test multiple servers on a single machine, specify the servername as localhost with unique quorum & leader
election ports (i.e. 2888:3888, 2889:3889, 2890:3890 in the example above) for each server.X in that server's config file. Of
course separate dataDirs and distinct clientPorts are also necessary (in the above replicated example, running on a single
localhost, you would still have three config files).

1.5. Other Optimizations

There are a couple of other configuration parameters that can greatly increase performance:

ZooKeeper Getting Started Guide

Page 4
Copyright © 2008 The Apache Software Foundation. All rights reserved.

• To get low latencies on updates it is important to have a dedicated transaction log
directory. By default transaction logs are put in the same directory as the data snapshots
and myid file. The dataLogDir parameters indicates a different directory to use for the
transaction logs.

• [tbd: what is the other config param?]

ZooKeeper Getting Started Guide

Page 5
Copyright © 2008 The Apache Software Foundation. All rights reserved.

	1 Getting Started: Coordinating Distributed Applications with ZooKeeper
	1.1 Installing and Running ZooKeeper in Single Server Mode
	1.2 Connecting to ZooKeeper
	1.3 Programming to ZooKeeper
	1.4 Running Replicated ZooKeeper
	1.5 Other Optimizations

