
Copyright ©  The Apache Software Foundation. All rights reserved.

ZooKeeper Administrator's Guide

A Guide to Deployment and Administration

by

Table of contents

1 Deployment........................................................................................................................ 2

  1.1 System Requirements....................................................................................................2

  1.2 Clustered (Multi-Server) Setup.....................................................................................3

  1.3 Single Server and Developer Setup..............................................................................5

2 Administration.................................................................................................................... 5

  2.1 Designing a ZooKeeper Deployment........................................................................... 6

  2.2 Provisioning.................................................................................................................. 7

  2.3 Things to Consider: ZooKeeper Strengths and Limitations..........................................7

  2.4 Administering................................................................................................................7

  2.5 Maintenance.................................................................................................................. 7

  2.6 Supervision....................................................................................................................8

  2.7 Monitoring.....................................................................................................................8

  2.8 Logging......................................................................................................................... 9

  2.9 Troubleshooting............................................................................................................ 9

  2.10 Configuration Parameters............................................................................................9

  2.11 ZooKeeper Commands..............................................................................................21

  2.12 Data File Management..............................................................................................24

  2.13 Things to Avoid........................................................................................................ 27

  2.14 Best Practices............................................................................................................ 28



ZooKeeper Administrator's Guide

Page 2Copyright ©  The Apache Software Foundation. All rights reserved.

1 Deployment

This section contains information about deploying Zookeeper and covers these topics:

• System Requirements
• Clustered (Multi-Server) Setup
• Single Server and Developer Setup

The first two sections assume you are interested in installing ZooKeeper in a production
environment such as a datacenter. The final section covers situations in which you are setting
up ZooKeeper on a limited basis - for evaluation, testing, or development - but not in a
production environment.

1.1 System Requirements

1.1.1 Supported Platforms

ZooKeeper consists of multiple components. Some components are supported broadly, and
other components are supported only on a smaller set of platforms.

• Client is the Java client library, used by applications to connect to a ZooKeeper
ensemble.

• Server is the Java server that runs on the ZooKeeper ensemble nodes.
• Native Client is a client implemented in C, similar to the Java client, used by

applications to connect to a ZooKeeper ensemble.
• Contrib refers to multiple optional add-on components.

The following matrix describes the level of support committed for running each component
on different operating system platforms.

Operating System Client Server Native Client Contrib

GNU/Linux Development and
Production

Development and
Production

Development and
Production

Development and
Production

Solaris Development and
Production

Development and
Production

Not Supported Not Supported

FreeBSD Development and
Production

Development and
Production

Not Supported Not Supported

Windows Development and
Production

Development and
Production

Not Supported Not Supported

Mac OS X Development Only Development Only Not Supported Not Supported



ZooKeeper Administrator's Guide

Page 3Copyright ©  The Apache Software Foundation. All rights reserved.

Table 1: Support Matrix

For any operating system not explicitly mentioned as supported in the matrix, components
may or may not work. The ZooKeeper community will fix obvious bugs that are reported for
other platforms, but there is no full support.

1.1.2 Required Software

ZooKeeper runs in Java, release 1.7 or greater (JDK 7 or greater, FreeBSD support requires
openjdk7). It runs as an ensemble of ZooKeeper servers. Three ZooKeeper servers is the
minimum recommended size for an ensemble, and we also recommend that they run on
separate machines. At Yahoo!, ZooKeeper is usually deployed on dedicated RHEL boxes,
with dual-core processors, 2GB of RAM, and 80GB IDE hard drives.

1.2 Clustered (Multi-Server) Setup

For reliable ZooKeeper service, you should deploy ZooKeeper in a cluster known as an
ensemble. As long as a majority of the ensemble are up, the service will be available.
Because Zookeeper requires a majority, it is best to use an odd number of machines. For
example, with four machines ZooKeeper can only handle the failure of a single machine; if
two machines fail, the remaining two machines do not constitute a majority. However, with
five machines ZooKeeper can handle the failure of two machines.

Note:

As mentioned in the ZooKeeper Getting Started Guide , a minimum of three servers are required
for a fault tolerant clustered setup, and it is strongly recommended that you have an odd number of
servers.

Usually three servers is more than enough for a production install, but for maximum reliability
during maintenance, you may wish to install five servers. With three servers, if you perform
maintenance on one of them, you are vulnerable to a failure on one of the other two servers during
that maintenance. If you have five of them running, you can take one down for maintenance, and
know that you're still OK if one of the other four suddenly fails.

Your redundancy considerations should include all aspects of your environment. If you have three
ZooKeeper servers, but their network cables are all plugged into the same network switch, then the
failure of that switch will take down your entire ensemble.

Here are the steps to setting a server that will be part of an ensemble. These steps should be
performed on every host in the ensemble:
1. Install the Java JDK. You can use the native packaging system for your system, or

download the JDK from:

http://java.sun.com/javase/downloads/index.jsp

zookeeperStarted.html
http://java.sun.com/javase/downloads/index.jsp


ZooKeeper Administrator's Guide

Page 4Copyright ©  The Apache Software Foundation. All rights reserved.

2. Set the Java heap size. This is very important to avoid swapping, which will seriously
degrade ZooKeeper performance. To determine the correct value, use load tests,
and make sure you are well below the usage limit that would cause you to swap. Be
conservative - use a maximum heap size of 3GB for a 4GB machine.

3. Install the ZooKeeper Server Package. It can be downloaded from:

http://zookeeper.apache.org/releases.html
4. Create a configuration file. This file can be called anything. Use the following settings as

a starting point:

tickTime=2000
dataDir=/var/lib/zookeeper/
clientPort=2181
initLimit=5
syncLimit=2
server.1=zoo1:2888:3888
server.2=zoo2:2888:3888
server.3=zoo3:2888:3888

You can find the meanings of these and other configuration settings in the section
Configuration Parameters. A word though about a few here:

Every machine that is part of the ZooKeeper ensemble should know about every other
machine in the ensemble. You accomplish this with the series of lines of the form
server.id=host:port:port. The parameters host and port are straightforward. You
attribute the server id to each machine by creating a file named myid, one for each
server, which resides in that server's data directory, as specified by the configuration file
parameter dataDir.

5. The myid file consists of a single line containing only the text of that machine's id. So
myid of server 1 would contain the text "1" and nothing else. The id must be unique
within the ensemble and should have a value between 1 and 255.

6. Create an initialization marker file initialize in the same directory as myid. This
file indicates that an empty data directory is expected. When present, an empty data
base is created and the marker file deleted. When not present, an empty data directory
will mean this peer will not have voting rights and it will not populate the data directory
until it communicates with an active leader. Intended use is to only create this file when
bringing up a new ensemble.

7. If your configuration file is set up, you can start a ZooKeeper server:

$ java -cp zookeeper.jar:lib/slf4j-api-1.7.5.jar:lib/
slf4j-log4j12-1.7.5.jar:lib/log4j-1.2.17.jar:conf \
org.apache.zookeeper.server.quorum.QuorumPeerMain zoo.cfg

http://zookeeper.apache.org/releases.html


ZooKeeper Administrator's Guide

Page 5Copyright ©  The Apache Software Foundation. All rights reserved.

QuorumPeerMain starts a ZooKeeper server, JMX management beans are also registered
which allows management through a JMX management console. The ZooKeeper JMX
document contains details on managing ZooKeeper with JMX.

See the script bin/zkServer.sh, which is included in the release, for an example of starting
server instances.

8. Test your deployment by connecting to the hosts:

In Java, you can run the following command to execute simple operations:

$ bin/zkCli.sh -server 127.0.0.1:2181

1.3 Single Server and Developer Setup

If you want to setup ZooKeeper for development purposes, you will probably want to setup a
single server instance of ZooKeeper, and then install either the Java or C client-side libraries
and bindings on your development machine.

The steps to setting up a single server instance are the similar to the above, except the
configuration file is simpler. You can find the complete instructions in the Installing and
Running ZooKeeper in Single Server Mode section of the ZooKeeper Getting Started Guide.

For information on installing the client side libraries, refer to the Bindings section of the
ZooKeeper Programmer's Guide.

2 Administration

This section contains information about running and maintaining ZooKeeper and covers
these topics:

• Designing a ZooKeeper Deployment
• Provisioning
• Things to Consider: ZooKeeper Strengths and Limitations
• Administering
• Maintenance
• Supervision
• Monitoring
• Logging
• Troubleshooting
• Configuration Parameters
• ZooKeeper Commands
• Data File Management
• Things to Avoid
• Best Practices

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
zookeeperJMX.html
zookeeperJMX.html
zookeeperStarted.html#sc_InstallingSingleMode
zookeeperStarted.html#sc_InstallingSingleMode
zookeeperStarted.html
zookeeperProgrammers.html#Bindings
zookeeperProgrammers.html


ZooKeeper Administrator's Guide

Page 6Copyright ©  The Apache Software Foundation. All rights reserved.

2.1 Designing a ZooKeeper Deployment

The reliability of ZooKeeper rests on two basic assumptions.
1. Only a minority of servers in a deployment will fail. Failure in this context means a

machine crash, or some error in the network that partitions a server off from the majority.
2. Deployed machines operate correctly. To operate correctly means to execute code

correctly, to have clocks that work properly, and to have storage and network
components that perform consistently.

The sections below contain considerations for ZooKeeper administrators to maximize
the probability for these assumptions to hold true. Some of these are cross-machines
considerations, and others are things you should consider for each and every machine in your
deployment.

2.1.1 Cross Machine Requirements

For the ZooKeeper service to be active, there must be a majority of non-failing machines that
can communicate with each other. To create a deployment that can tolerate the failure of F
machines, you should count on deploying 2xF+1 machines. Thus, a deployment that consists
of three machines can handle one failure, and a deployment of five machines can handle two
failures. Note that a deployment of six machines can only handle two failures since three
machines is not a majority. For this reason, ZooKeeper deployments are usually made up of
an odd number of machines.

To achieve the highest probability of tolerating a failure you should try to make machine
failures independent. For example, if most of the machines share the same switch, failure of
that switch could cause a correlated failure and bring down the service. The same holds true
of shared power circuits, cooling systems, etc.

2.1.2 Single Machine Requirements

If ZooKeeper has to contend with other applications for access to resources like storage
media, CPU, network, or memory, its performance will suffer markedly. ZooKeeper has
strong durability guarantees, which means it uses storage media to log changes before the
operation responsible for the change is allowed to complete. You should be aware of this
dependency then, and take great care if you want to ensure that ZooKeeper operations aren’t
held up by your media. Here are some things you can do to minimize that sort of degradation:

• ZooKeeper's transaction log must be on a dedicated device. (A dedicated partition is not
enough.) ZooKeeper writes the log sequentially, without seeking Sharing your log device
with other processes can cause seeks and contention, which in turn can cause multi-
second delays.



ZooKeeper Administrator's Guide

Page 7Copyright ©  The Apache Software Foundation. All rights reserved.

• Do not put ZooKeeper in a situation that can cause a swap. In order for ZooKeeper to
function with any sort of timeliness, it simply cannot be allowed to swap. Therefore,
make certain that the maximum heap size given to ZooKeeper is not bigger than the
amount of real memory available to ZooKeeper. For more on this, see Things to Avoid
below.

2.2 Provisioning

2.3 Things to Consider: ZooKeeper Strengths and Limitations

2.4 Administering

2.5 Maintenance

Little long term maintenance is required for a ZooKeeper cluster however you must be aware
of the following:

2.5.1 Ongoing Data Directory Cleanup

The ZooKeeper Data Directory contains files which are a persistent copy of the znodes
stored by a particular serving ensemble. These are the snapshot and transactional log
files. As changes are made to the znodes these changes are appended to a transaction log.
Occasionally, when a log grows large, a snapshot of the current state of all znodes will be
written to the filesystem and a new transaction log file is created for future transactions.
During snapshotting, ZooKeeper may continue appending incoming transactions to the old
log file. Therefore, some transactions which are newer than a snapshot may be found in the
last transaction log preceding the snapshot.

A ZooKeeper server will not remove old snapshots and log files when using the default
configuration (see autopurge below), this is the responsibility of the operator. Every serving
environment is different and therefore the requirements of managing these files may differ
from install to install (backup for example).

The PurgeTxnLog utility implements a simple retention policy that administrators can use.
The API docs contains details on calling conventions (arguments, etc...).

In the following example the last count snapshots and their corresponding logs are retained
and the others are deleted. The value of <count> should typically be greater than 3 (although
not required, this provides 3 backups in the unlikely event a recent log has become
corrupted). This can be run as a cron job on the ZooKeeper server machines to clean up the
logs daily.

api/index.html


ZooKeeper Administrator's Guide

Page 8Copyright ©  The Apache Software Foundation. All rights reserved.

 java -cp zookeeper.jar:lib/slf4j-api-1.7.5.jar:lib/slf4j-log4j12-1.7.5.jar:lib/
log4j-1.2.17.jar:conf org.apache.zookeeper.server.PurgeTxnLog <dataDir> <snapDir> -n
 <count>

Automatic purging of the snapshots and corresponding transaction logs was introduced
in version 3.4.0 and can be enabled via the following configuration parameters
autopurge.snapRetainCount and autopurge.purgeInterval. For more on this, see
Advanced Configuration below.

2.5.2 Debug Log Cleanup (log4j)

See the section on logging in this document. It is expected that you will setup a rolling file
appender using the in-built log4j feature. The sample configuration file in the release tar's
conf/log4j.properties provides an example of this.

2.6 Supervision

You will want to have a supervisory process that manages each of your ZooKeeper server
processes (JVM). The ZK server is designed to be "fail fast" meaning that it will shutdown
(process exit) if an error occurs that it cannot recover from. As a ZooKeeper serving cluster
is highly reliable, this means that while the server may go down the cluster as a whole is still
active and serving requests. Additionally, as the cluster is "self healing" the failed server
once restarted will automatically rejoin the ensemble w/o any manual interaction.

Having a supervisory process such as daemontools or SMF (other options for supervisory
process are also available, it's up to you which one you would like to use, these are just two
examples) managing your ZooKeeper server ensures that if the process does exit abnormally
it will automatically be restarted and will quickly rejoin the cluster.

It is also recommended to configure the ZooKeeper server process to terminate and dump
its heap if an OutOfMemoryError occurs. This is achieved by launching the JVM with
the following arguments on Linux and Windows respectively. The zkServer.sh and
zkServer.cmd scripts that ship with ZooKeeper set these options.

-XX:+HeapDumpOnOutOfMemoryError -XX:OnOutOfMemoryError='kill -9 %p'

"-XX:+HeapDumpOnOutOfMemoryError" "-XX:OnOutOfMemoryError=cmd /c taskkill /pid %%%%p /t /f"

2.7 Monitoring

The ZooKeeper service can be monitored in one of two primary ways; 1) the command
port through the use of 4 letter words and 2) JMX. See the appropriate section for your
environment/requirements.

http://cr.yp.to/daemontools.html
http://en.wikipedia.org/wiki/Service_Management_Facility
zookeeperJMX.html


ZooKeeper Administrator's Guide

Page 9Copyright ©  The Apache Software Foundation. All rights reserved.

2.8 Logging

ZooKeeper uses SLF4J version 1.7.5 as its logging infrastructure. For backward
compatibility it is bound to LOG4J but you can use LOGBack or any other supported
logging framework of your choice.

The ZooKeeper default log4j.properties file resides in the conf directory. Log4j
requires that log4j.properties either be in the working directory (the directory from
which ZooKeeper is run) or be accessible from the classpath.

For more information about SLF4J, see its manual.

For more information about LOG4J, see Log4j Default Initialization Procedure of the log4j
manual.

2.9 Troubleshooting

Server not coming up because of file corruption
A server might not be able to read its database and fail to come up because of some
file corruption in the transaction logs of the ZooKeeper server. You will see some
IOException on loading ZooKeeper database. In such a case, make sure all the other
servers in your ensemble are up and working. Use "stat" command on the command port
to see if they are in good health. After you have verified that all the other servers of the
ensemble are up, you can go ahead and clean the database of the corrupt server. Delete all
the files in datadir/version-2 and datalogdir/version-2/. Restart the server.

2.10 Configuration Parameters

ZooKeeper's behavior is governed by the ZooKeeper configuration file. This file is designed
so that the exact same file can be used by all the servers that make up a ZooKeeper server
assuming the disk layouts are the same. If servers use different configuration files, care must
be taken to ensure that the list of servers in all of the different configuration files match.

Note:

In 3.5.0 and later, some of these parameters should be placed in a dynamic configuration file. If
they are placed in the static configuration file, ZooKeeper will automatically move them over to the
dynamic configuration file. See  Dynamic Reconfiguration for more information.

2.10.1 Minimum Configuration

Here are the minimum configuration keywords that must be defined in the configuration file:

clientPort
the port to listen for client connections; that is, the port that clients attempt to connect to.
secureClientPort

http://www.slf4j.org
http://logback.qos.ch/
http://www.slf4j.org/manual.html
http://logging.apache.org/log4j/1.2/manual.html#defaultInit
zookeeperReconfig.html


ZooKeeper Administrator's Guide

Page 10Copyright ©  The Apache Software Foundation. All rights reserved.

the port to listen on for secure client connections using SSL. clientPort specifies the port
for plaintext connections while  secureClientPort specifies the port for SSL connections.
Specifying both enables mixed-mode while omitting either will disable that mode.

Note that SSL feature will be enabled when user plugs-in zookeeper.serverCnxnFactory,
zookeeper.clientCnxnSocket as Netty.
dataDir
the location where ZooKeeper will store the in-memory database snapshots and, unless
specified otherwise, the transaction log of updates to the database.

Note:

Be careful where you put the transaction log. A dedicated transaction log device is key
to consistent good performance. Putting the log on a busy device will adversely effect
performance.

tickTime
the length of a single tick, which is the basic time unit used by ZooKeeper, as measured
in milliseconds. It is used to regulate heartbeats, and timeouts. For example, the
minimum session timeout will be two ticks.

2.10.2 Advanced Configuration

The configuration settings in the section are optional. You can use them to further fine tune
the behaviour of your ZooKeeper servers. Some can also be set using Java system properties,
generally of the form zookeeper.keyword. The exact system property, when available, is
noted below.

dataLogDir
(No Java system property)

This option will direct the machine to write the transaction log to the dataLogDir
rather than the dataDir. This allows a dedicated log device to be used, and helps avoid
competition between logging and snapshots.

Note:

Having a dedicated log device has a large impact on throughput and stable latencies. It is highly
recommended to dedicate a log device and set dataLogDir to point to a directory on that device,
and then make sure to point dataDir to a directory not residing on that device.

globalOutstandingLimit
(Java system property: zookeeper.globalOutstandingLimit.)

Clients can submit requests faster than ZooKeeper can process them, especially if
there are a lot of clients. To prevent ZooKeeper from running out of memory due



ZooKeeper Administrator's Guide

Page 11Copyright ©  The Apache Software Foundation. All rights reserved.

to queued requests, ZooKeeper will throttle clients so that there is no more than
globalOutstandingLimit outstanding requests in the system. The default limit is 1,000.
preAllocSize
(Java system property: zookeeper.preAllocSize)

To avoid seeks ZooKeeper allocates space in the transaction log file in blocks of
preAllocSize kilobytes. The default block size is 64M. One reason for changing the size
of the blocks is to reduce the block size if snapshots are taken more often. (Also, see
snapCount).
snapCount
(Java system property: zookeeper.snapCount)

ZooKeeper records its transactions using snapshots and a transaction log (think write-
ahead log).The number of transactions recorded in the transaction log before a snapshot
can be taken (and the transaction log rolled) is determined by snapCount. In order to
prevent all of the machines in the quorum from taking a snapshot at the same time, each
ZooKeeper server will take a snapshot when the number of transactions in the transaction
log reaches a runtime generated random value in the [snapCount/2+1, snapCount]
range.The default snapCount is 100,000.
maxClientCnxns
(No Java system property)

Limits the number of concurrent connections (at the socket level) that a single client,
identified by IP address, may make to a single member of the ZooKeeper ensemble. This
is used to prevent certain classes of DoS attacks, including file descriptor exhaustion. The
default is 60. Setting this to 0 entirely removes the limit on concurrent connections.
clientPortAddress
New in 3.3.0: the address (ipv4, ipv6 or hostname) to listen for client connections; that is,
the address that clients attempt to connect to. This is optional, by default we bind in such
a way that any connection to the clientPort for any address/interface/nic on the server
will be accepted.
minSessionTimeout
(No Java system property)

New in 3.3.0: the minimum session timeout in milliseconds that the server will allow the
client to negotiate. Defaults to 2 times the tickTime.
maxSessionTimeout
(No Java system property)

New in 3.3.0: the maximum session timeout in milliseconds that the server will allow the
client to negotiate. Defaults to 20 times the tickTime.
fsync.warningthresholdms
(Java system property: zookeeper.fsync.warningthresholdms)



ZooKeeper Administrator's Guide

Page 12Copyright ©  The Apache Software Foundation. All rights reserved.

New in 3.3.4: A warning message will be output to the log whenever an fsync in the
Transactional Log (WAL) takes longer than this value. The values is specified in
milliseconds and defaults to 1000. This value can only be set as a system property.
autopurge.snapRetainCount
(No Java system property)

New in 3.4.0: When enabled, ZooKeeper auto purge feature retains the
autopurge.snapRetainCount most recent snapshots and the corresponding transaction
logs in the dataDir and dataLogDir respectively and deletes the rest. Defaults to 3.
Minimum value is 3.
autopurge.purgeInterval
(No Java system property)

New in 3.4.0: The time interval in hours for which the purge task has to be triggered. Set
to a positive integer (1 and above) to enable the auto purging. Defaults to 0.
syncEnabled
(Java system property: zookeeper.observer.syncEnabled)

New in 3.4.6, 3.5.0: The observers now log transaction and write snapshot to disk by
default like the participants. This reduces the recovery time of the observers on restart.
Set to "false" to disable this feature. Default is "true"

2.10.3 Cluster Options

The options in this section are designed for use with an ensemble of servers -- that is, when
deploying clusters of servers.

electionAlg
(No Java system property)

Election implementation to use. A value of "1" corresponds to the non-authenticated
UDP-based version of fast leader election, "2" corresponds to the authenticated UDP-
based version of fast leader election, and "3" corresponds to TCP-based version of fast
leader election. Currently, algorithm 3 is the default.

Note:

The implementations of leader election 1, and 2 are now  deprecated . We have the intention of
removing them in the next release, at which point only the FastLeaderElection will be available.

initLimit
(No Java system property)

Amount of time, in ticks (see tickTime), to allow followers to connect and sync to a
leader. Increased this value as needed, if the amount of data managed by ZooKeeper is
large.



ZooKeeper Administrator's Guide

Page 13Copyright ©  The Apache Software Foundation. All rights reserved.

leaderServes
(Java system property: zookeeper.leaderServes)

Leader accepts client connections. Default value is "yes". The leader machine coordinates
updates. For higher update throughput at the slight expense of read throughput the leader
can be configured to not accept clients and focus on coordination. The default to this
option is yes, which means that a leader will accept client connections.

Note:

Turning on leader selection is highly recommended when you have more than three ZooKeeper
servers in an ensemble.

server.x=[hostname]:nnnnn[:nnnnn], etc
(No Java system property)

servers making up the ZooKeeper ensemble. When the server starts up, it determines
which server it is by looking for the file myid in the data directory. That file contains the
server number, in ASCII, and it should match x in server.x in the left hand side of this
setting.

The list of servers that make up ZooKeeper servers that is used by the clients must match
the list of ZooKeeper servers that each ZooKeeper server has.

There are two port numbers nnnnn. The first followers use to connect to the leader, and
the second is for leader election. If you want to test multiple servers on a single machine,
then different ports can be used for each server.
syncLimit
(No Java system property)

Amount of time, in ticks (see tickTime), to allow followers to sync with ZooKeeper. If
followers fall too far behind a leader, they will be dropped.
group.x=nnnnn[:nnnnn]
(No Java system property)

Enables a hierarchical quorum construction."x" is a group identifier and the numbers
following the "=" sign correspond to server identifiers. The left-hand side of the
assignment is a colon-separated list of server identifiers. Note that groups must be
disjoint and the union of all groups must be the ZooKeeper ensemble.

You will find an example here
weight.x=nnnnn
(No Java system property)

Used along with "group", it assigns a weight to a server when forming quorums. Such
a value corresponds to the weight of a server when voting. There are a few parts of
ZooKeeper that require voting such as leader election and the atomic broadcast protocol.

zookeeperHierarchicalQuorums.html


ZooKeeper Administrator's Guide

Page 14Copyright ©  The Apache Software Foundation. All rights reserved.

By default the weight of server is 1. If the configuration defines groups, but not weights,
then a value of 1 will be assigned to all servers.

You will find an example here
cnxTimeout
(Java system property: zookeeper.cnxTimeout)

Sets the timeout value for opening connections for leader election notifications. Only
applicable if you are using electionAlg 3.

Note:

Default value is 5 seconds.

standaloneEnabled
(No Java system property)

New in 3.5.0: When set to false, a single server can be started in replicated mode,
a lone participant can run with observers, and a cluster can reconfigure down to
one node, and up from one node. The default is true for backwards compatibility. It
can be set using QuorumPeerConfig's setStandaloneEnabled method or by adding
"standaloneEnabled=false" or "standaloneEnabled=true" to a server's config file.
reconfigEnabled
(No Java system property)

New in 3.5.3: This controls the enabling or disabling of  Dynamic Reconfiguration
feature. When the feature is enabled, users can perform reconfigure operations through
the ZooKeeper client API or through ZooKeeper command line tools assuming users
are authorized to perform such operations. When the feature is disabled, no user,
including the super user, can perform a reconfiguration. Any attempt to reconfigure will
return an error. "reconfigEnabled" option can be set as "reconfigEnabled=false"
or "reconfigEnabled=true" to a server's config file, or using QuorumPeerConfig's
setReconfigEnabled method. The default value is false. If present, the value should
be consistent across every server in the entire ensemble. Setting the value as true on
some servers and false on other servers will cause inconsistent behavior depending on
which server is elected as leader. If the leader has a setting of "reconfigEnabled=true",
then the ensemble will have reconfig feature enabled. If the leader has a setting of
"reconfigEnabled=false", then the ensemble will have reconfig feature disabled. It is
thus recommended to have a consistent value for "reconfigEnabled" across servers in
the ensemble.
4lw.commands.whitelist
(Java system property: zookeeper.4lw.commands.whitelist)

New in 3.5.3: A list of comma separated Four Letter Words commands that user wants to
use. A valid Four Letter Words command must be put in this list else ZooKeeper server

zookeeperHierarchicalQuorums.html
zookeeperReconfig.html


ZooKeeper Administrator's Guide

Page 15Copyright ©  The Apache Software Foundation. All rights reserved.

will not enable the command. By default the whitelist only contains "srvr" command
which zkServer.sh uses. The rest of four letter word commands are disabled by default.

Here's an example of the configuration that enables stat, ruok, conf, and isro command
while disabling the rest of Four Letter Words command:

                4lw.commands.whitelist=stat, ruok, conf, isro
              

If you really need enable all four letter word commands by default, you can use the
asterisk option so you don't have to include every command one by one in the list. As an
example, this will enable all four letter word commands:

                4lw.commands.whitelist=*
              

tcpKeepAlive
(Java system property: zookeeper.tcpKeepAlive)

New in 3.5.4: Setting this to true sets the TCP keepAlive flag on the sockets used by
quorum members to perform elections. This will allow for connections between quorum
members to remain up when there is network infrastructure that may otherwise break
them. Some NATs and firewalls may terminate or lose state for long running or idle
connections.

Enabling this option relies on OS level settings to work properly, check your operating
system's options regarding TCP keepalive for more information. Defaults to false.

2.10.4 Encryption, Authentication, Authorization Options

The options in this section allow control over encryption/authentication/authorization
performed by the service.

DigestAuthenticationProvider.superDigest
(Java system property: zookeeper.DigestAuthenticationProvider.superDigest)

By default this feature is disabled

New in 3.2: Enables a ZooKeeper ensemble administrator to access the znode hierarchy
as a "super" user. In particular no ACL checking occurs for a user authenticated as super.

org.apache.zookeeper.server.auth.DigestAuthenticationProvider can be used to generate
the superDigest, call it with one parameter of "super:<password>". Provide the generated
"super:<data>" as the system property value when starting each server of the ensemble.

When authenticating to a ZooKeeper server (from a ZooKeeper client) pass a scheme of
"digest" and authdata of "super:<password>". Note that digest auth passes the authdata



ZooKeeper Administrator's Guide

Page 16Copyright ©  The Apache Software Foundation. All rights reserved.

in plaintext to the server, it would be prudent to use this authentication method only on
localhost (not over the network) or over an encrypted connection.
X509AuthenticationProvider.superUser
(Java system property: zookeeper.X509AuthenticationProvider.superUser)

The SSL-backed way to enable a ZooKeeper ensemble administrator to access the znode
hierarchy as a "super" user. When this parameter is set to an X500 principal name, only
an authenticated client with that principal will be able to bypass ACL checking and have
full privileges to all znodes.
zookeeper.superUser
(Java system property: zookeeper.superUser)

Similar to zookeeper.X509AuthenticationProvider.superUser but is generic for SASL
based logins. It stores the name of a user that can access the znode hierarchy as a "super"
user.
ssl.keyStore.location and ssl.keyStore.password
(Java system properties:  zookeeper.ssl.keyStore.location and
zookeeper.ssl.keyStore.password)

Specifies the file path to a JKS containing the local credentials to be used for SSL
connections, and the password to unlock the file.
ssl.trustStore.location and ssl.trustStore.password
(Java system properties:  zookeeper.ssl.trustStore.location and
zookeeper.ssl.trustStore.password)

Specifies the file path to a JKS containing the remote credentials to be used for SSL
connections, and the password to unlock the file.
ssl.authProvider
(Java system property: zookeeper.ssl.authProvider)

Specifies a subclass of  org.apache.zookeeper.auth.X509AuthenticationProvider
to use for secure client authentication. This is useful in certificate key infrastructures
that do not use JKS. It may be necessary to extend javax.net.ssl.X509KeyManager 
and javax.net.ssl.X509TrustManager to get the desired behavior from the SSL stack.
To configure the ZooKeeper server to use the custom provider for authentication,
choose a scheme name for the custom AuthenticationProvider and set the property
zookeeper.authProvider.[scheme]  to the fully-qualified class name of the custom
implementation. This will load the provider into the ProviderRegistry. Then set this
property  zookeeper.ssl.authProvider=[scheme] and that provider will be used for
secure authentication.

2.10.5 Experimental Options/Features

New features that are currently considered experimental.



ZooKeeper Administrator's Guide

Page 17Copyright ©  The Apache Software Foundation. All rights reserved.

Read Only Mode Server
(Java system property: readonlymode.enabled)

New in 3.4.0: Setting this value to true enables Read Only Mode server support (disabled
by default). ROM allows clients sessions which requested ROM support to connect to the
server even when the server might be partitioned from the quorum. In this mode ROM
clients can still read values from the ZK service, but will be unable to write values and
see changes from other clients. See ZOOKEEPER-784 for more details.

2.10.6 Unsafe Options

The following options can be useful, but be careful when you use them. The risk of each is
explained along with the explanation of what the variable does.

forceSync
(Java system property: zookeeper.forceSync)

Requires updates to be synced to media of the transaction log before finishing processing
the update. If this option is set to no, ZooKeeper will not require updates to be synced to
the media.
jute.maxbuffer:
(Java system property: jute.maxbuffer)

This option can only be set as a Java system property. There is no zookeeper prefix on
it. It specifies the maximum size of the data that can be stored in a znode. The default
is 0xfffff, or just under 1M. If this option is changed, the system property must be set
on all servers and clients otherwise problems will arise. This is really a sanity check.
ZooKeeper is designed to store data on the order of kilobytes in size.
skipACL
(Java system property: zookeeper.skipACL)

Skips ACL checks. This results in a boost in throughput, but opens up full access to the
data tree to everyone.
quorumListenOnAllIPs
When set to true the ZooKeeper server will listen for connections from its peers on
all available IP addresses, and not only the address configured in the server list of the
configuration file. It affects the connections handling the ZAB protocol and the Fast
Leader Election protocol. Default value is false.

2.10.7 Disabling data directory autocreation

New in 3.5: The default behavior of a ZooKeeper server is to automatically create the
data directory (specified in the configuration file) when started if that directory does not
already exist. This can be inconvenient and even dangerous in some cases. Take the case
where a configuration change is made to a running server, wherein the dataDir parameter is



ZooKeeper Administrator's Guide

Page 18Copyright ©  The Apache Software Foundation. All rights reserved.

accidentally changed. When the ZooKeeper server is restarted it will create this non-existent
directory and begin serving - with an empty znode namespace. This scenario can result in an
effective "split brain" situation (i.e. data in both the new invalid directory and the original
valid data store). As such is would be good to have an option to turn off this autocreate
behavior. In general for production environments this should be done, unfortunately however
the default legacy behavior cannot be changed at this point and therefore this must be done
on a case by case basis. This is left to users and to packagers of ZooKeeper distributions.

When running zkServer.sh autocreate can be disabled by setting the environment
variable ZOO_DATADIR_AUTOCREATE_DISABLE to 1. When running
ZooKeeper servers directly from class files this can be accomplished by
setting zookeeper.datadir.autocreate=false on the java command line, i.e. -
Dzookeeper.datadir.autocreate=false

When this feature is disabled, and the ZooKeeper server determines that the required
directories do not exist it will generate an error and refuse to start.

A new script zkServer-initialize.sh is provided to support this new feature. If autocreate is
disabled it is necessary for the user to first install ZooKeeper, then create the data directory
(and potentially txnlog directory), and then start the server. Otherwise as mentioned in the
previous paragraph the server will not start. Running zkServer-initialize.sh will create the
required directories, and optionally setup the myid file (optional command line parameter).
This script can be used even if the autocreate feature itself is not used, and will likely be of
use to users as this (setup, including creation of the myid file) has been an issue for users
in the past. Note that this script ensures the data directories exist only, it does not create a
config file, but rather requires a config file to be available in order to execute.

2.10.8 Enabling db existence validation

New in 3.6.0: The default behavior of a ZooKeeper server on startup when no data tree is
found is to set zxid to zero and join the quorum as a voting member. This can be dangerous if
some event (e.g. a rogue 'rm -rf') has removed the data directory while the server was down
since this server may help elect a leader that is missing transactions. Enabling db existence
validation will change the behavior on startup when no data tree is found: the server joins the
ensemble as a non-voting participant until it is able to sync with the leader and acquire an up-
to-date version of the ensemble data. To indicate an empty data tree is expected (ensemble
creation), the user should place a file 'initialize' in the same directory as 'myid'. This file will
be detected and deleted by the server on startup.

Initialization validation can be enabled when running ZooKeeper servers directly from
class files by setting zookeeper.db.autocreate=false on the java command line, i.e. -
Dzookeeper.db.autocreate=false. Running zkServer-initialize.sh will create the required
initialization file.



ZooKeeper Administrator's Guide

Page 19Copyright ©  The Apache Software Foundation. All rights reserved.

2.10.9 Performance Tuning Options

New in 3.5.0: Several subsystems have been reworked to improve read throughput. This
includes multi-threading of the NIO communication subsystem and request processing
pipeline (Commit Processor). NIO is the default client/server communication subsystem.
Its threading model comprises 1 acceptor thread, 1-N selector threads and 0-M socket I/O
worker threads. In the request processing pipeline the system can be configured to process
multiple read request at once while maintaining the same consistency guarantee (same-
session read-after-write). The Commit Processor threading model comprises 1 main thread
and 0-N worker threads.

The default values are aimed at maximizing read throughput on a dedicated ZooKeeper
machine. Both subsystems need to have sufficient amount of threads to achieve peak read
throughput.

zookeeper.nio.numSelectorThreads
(Java system property only: zookeeper.nio.numSelectorThreads)

New in 3.5.0: Number of NIO selector threads. At least 1 selector thread required. It is
recommended to use more than one selector for large numbers of client connections. The
default value is sqrt( number of cpu cores / 2 ).
zookeeper.nio.numWorkerThreads
(Java system property only: zookeeper.nio.numWorkerThreads)

New in 3.5.0: Number of NIO worker threads. If configured with 0 worker threads, the
selector threads do the socket I/O directly. The default value is 2 times the number of cpu
cores.
zookeeper.commitProcessor.numWorkerThreads
(Java system property only: zookeeper.commitProcessor.numWorkerThreads)

New in 3.5.0: Number of Commit Processor worker threads. If configured with 0 worker
threads, the main thread will process the request directly. The default value is the number
of cpu cores.
znode.container.checkIntervalMs
(Java system property only)

New in 3.6.0: The time interval in milliseconds for each check of candidate container and
ttl nodes. Default is "60000".
znode.container.maxPerMinute
(Java system property only)

New in 3.6.0: The maximum number of container and ttl nodes that can be deleted per
minute. This prevents herding during container deletion. Default is "10000".



ZooKeeper Administrator's Guide

Page 20Copyright ©  The Apache Software Foundation. All rights reserved.

2.10.10 Communication using the Netty framework

Netty is an NIO based client/server communication framework, it simplifies (over NIO
being used directly) many of the complexities of network level communication for java
applications. Additionally the Netty framework has built in support for encryption (SSL)
and authentication (certificates). These are optional features and can be turned on or off
individually.

In versions 3.5+, a ZooKeeper server can use Netty instead of NIO (default
option) by setting the environment variable zookeeper.serverCnxnFactory to
org.apache.zookeeper.server.NettyServerCnxnFactory; for the client, set
zookeeper.clientCnxnSocket to org.apache.zookeeper.ClientCnxnSocketNetty.

TBD - tuning options for netty - currently there are none that are netty specific but we should
add some. Esp around max bound on the number of reader worker threads netty creates.

TBD - how to manage encryption

TBD - how to manage certificates

2.10.11 AdminServer configuration

New in 3.5.0: The following options are used to configure the AdminServer.

admin.enableServer
(Java system property: zookeeper.admin.enableServer)

Set to "false" to disable the AdminServer. By default the AdminServer is enabled.
admin.serverAddress
(Java system property: zookeeper.admin.serverAddress)

The address the embedded Jetty server listens on. Defaults to 0.0.0.0.
admin.serverPort
(Java system property: zookeeper.admin.serverPort)

The port the embedded Jetty server listens on. Defaults to 8080.
admin.idleTimeout
(Java system property: zookeeper.admin.idleTimeout)

Set the maximum idle time in milliseconds that a connection can wait before sending or
receiving data. Defaults to 30000 ms.
admin.commandURL
(Java system property: zookeeper.admin.commandURL)

The URL for listing and issuing commands relative to the root URL. Defaults to "/
commands".

http://netty.io


ZooKeeper Administrator's Guide

Page 21Copyright ©  The Apache Software Foundation. All rights reserved.

2.11 ZooKeeper Commands

2.11.1 The Four Letter Words

ZooKeeper responds to a small set of commands. Each command is composed of four letters.
You issue the commands to ZooKeeper via telnet or nc, at the client port.

Three of the more interesting commands: "stat" gives some general information about the
server and connected clients, while "srvr" and "cons" give extended details on server and
connections respectively.

New in 3.5.3: Four Letter Words need to be explicitly white listed before using. Please refer
4lw.commands.whitelist described in  cluster configuration section for details. Moving
forward, Four Letter Words will be deprecated, please use AdminServer instead.

conf
New in 3.3.0: Print details about serving configuration.
cons
New in 3.3.0: List full connection/session details for all clients connected to this server.
Includes information on numbers of packets received/sent, session id, operation latencies,
last operation performed, etc...
crst
New in 3.3.0: Reset connection/session statistics for all connections.
dump
Lists the outstanding sessions and ephemeral nodes. This only works on the leader.
envi
Print details about serving environment
ruok
Tests if server is running in a non-error state. The server will respond with imok if it is
running. Otherwise it will not respond at all.

A response of "imok" does not necessarily indicate that the server has joined the quorum,
just that the server process is active and bound to the specified client port. Use "stat" for
details on state wrt quorum and client connection information.
srst
Reset server statistics.
srvr
New in 3.3.0: Lists full details for the server.
stat
Lists brief details for the server and connected clients.
wchs
New in 3.3.0: Lists brief information on watches for the server.
wchc



ZooKeeper Administrator's Guide

Page 22Copyright ©  The Apache Software Foundation. All rights reserved.

New in 3.3.0: Lists detailed information on watches for the server, by session.
This outputs a list of sessions(connections) with associated watches (paths). Note,
depending on the number of watches this operation may be expensive (ie impact server
performance), use it carefully.
dirs
New in 3.5.1: Shows the total size of snapshot and log files in bytes
wchp
New in 3.3.0: Lists detailed information on watches for the server, by path. This outputs
a list of paths (znodes) with associated sessions. Note, depending on the number of
watches this operation may be expensive (ie impact server performance), use it carefully.
mntr
New in 3.4.0: Outputs a list of variables that could be used for monitoring the health of
the cluster.

$ echo mntr | nc localhost 2185

              zk_version  3.4.0
              zk_avg_latency  0
              zk_max_latency  0
              zk_min_latency  0
              zk_packets_received 70
              zk_packets_sent 69
              zk_outstanding_requests 0
              zk_server_state leader
              zk_znode_count   4
              zk_watch_count  0
              zk_ephemerals_count 0
              zk_approximate_data_size    27
              zk_followers    4                   - only exposed by the Leader
              zk_synced_followers 4               - only exposed by the Leader
              zk_pending_syncs    0               - only exposed by the Leader
              zk_open_file_descriptor_count 23    - only available on Unix platforms
              zk_max_file_descriptor_count 1024   - only available on Unix platforms
              

The output is compatible with java properties format and the content may change over
time (new keys added). Your scripts should expect changes.

ATTENTION: Some of the keys are platform specific and some of the keys are only
exported by the Leader.

The output contains multiple lines with the following format:

key \t value

isro
New in 3.4.0: Tests if server is running in read-only mode. The server will respond with
"ro" if in read-only mode or "rw" if not in read-only mode.
gtmk



ZooKeeper Administrator's Guide

Page 23Copyright ©  The Apache Software Foundation. All rights reserved.

Gets the current trace mask as a 64-bit signed long value in decimal format. See stmk
for an explanation of the possible values.
stmk
Sets the current trace mask. The trace mask is 64 bits, where each bit enables or disables
a specific category of trace logging on the server. Log4J must be configured to enable
TRACE level first in order to see trace logging messages. The bits of the trace mask
correspond to the following trace logging categories.

0b0000000000 Unused, reserved for future use.

0b0000000010 Logs client requests, excluding ping requests.

0b0000000100 Unused, reserved for future use.

0b0000001000 Logs client ping requests.

0b0000010000 Logs packets received from the quorum peer
that is the current leader, excluding ping
requests.

0b0000100000 Logs addition, removal and validation of client
sessions.

0b0001000000 Logs delivery of watch events to client
sessions.

0b0010000000 Logs ping packets received from the quorum
peer that is the current leader.

0b0100000000 Unused, reserved for future use.

0b1000000000 Unused, reserved for future use.

Table 1: Trace Mask Bit Values

All remaining bits in the 64-bit value are unused and reserved for future use. Multiple
trace logging categories are specified by calculating the bitwise OR of the documented
values. The default trace mask is 0b0100110010. Thus, by default, trace logging includes
client requests, packets received from the leader and sessions.

To set a different trace mask, send a request containing the stmk four-letter word
followed by the trace mask represented as a 64-bit signed long value. This example uses
the Perl pack function to construct a trace mask that enables all trace logging categories
described above and convert it to a 64-bit signed long value with big-endian byte order.
The result is appended to stmk and sent to the server using netcat. The server responds
with the new trace mask in decimal format.

$ perl -e "print 'stmk', pack('q>', 0b0011111010)" | nc localhost 2181
250



ZooKeeper Administrator's Guide

Page 24Copyright ©  The Apache Software Foundation. All rights reserved.

              

Here's an example of the ruok command:

$ echo ruok | nc 127.0.0.1 5111
        imok
        

2.11.2 The AdminServer

New in 3.5.0: The AdminServer is an embedded Jetty server that provides an HTTP
interface to the four letter word commands. By default, the server is started on port 8080,
and commands are issued by going to the URL "/commands/[command name]", e.g., http://
localhost:8080/commands/stat. The command response is returned as JSON. Unlike the
original protocol, commands are not restricted to four-letter names, and commands can
have multiple names; for instance, "stmk" can also be referred to as "set_trace_mask". To
view a list of all available commands, point a browser to the URL /commands (e.g., http://
localhost:8080/commands). See the AdminServer configuration options for how to change
the port and URLs.

The AdminServer is enabled by default, but can be disabled by either:

• Setting the zookeeper.admin.enableServer system property to false.
• Removing Jetty from the classpath. (This option is useful if you would like to override

ZooKeeper's jetty dependency.)

Note that the TCP four letter word interface is still available if the AdminServer is disabled.

2.12 Data File Management

ZooKeeper stores its data in a data directory and its transaction log in a transaction log
directory. By default these two directories are the same. The server can (and should) be
configured to store the transaction log files in a separate directory than the data files.
Throughput increases and latency decreases when transaction logs reside on a dedicated log
devices.

2.12.1 The Data Directory

This directory has two or three files in it:

• myid - contains a single integer in human readable ASCII text that represents the server
id.

• initialize - presence indicates lack of data tree is expected. Cleaned up once data
tree is created.

• snapshot.<zxid> - holds the fuzzy snapshot of a data tree.



ZooKeeper Administrator's Guide

Page 25Copyright ©  The Apache Software Foundation. All rights reserved.

Each ZooKeeper server has a unique id. This id is used in two places: the myid file and
the configuration file. The myid file identifies the server that corresponds to the given data
directory. The configuration file lists the contact information for each server identified by
its server id. When a ZooKeeper server instance starts, it reads its id from the myid file and
then, using that id, reads from the configuration file, looking up the port on which it should
listen.

The snapshot files stored in the data directory are fuzzy snapshots in the sense that during
the time the ZooKeeper server is taking the snapshot, updates are occurring to the data tree.
The suffix of the snapshot file names is the zxid, the ZooKeeper transaction id, of the last
committed transaction at the start of the snapshot. Thus, the snapshot includes a subset of
the updates to the data tree that occurred while the snapshot was in process. The snapshot,
then, may not correspond to any data tree that actually existed, and for this reason we refer
to it as a fuzzy snapshot. Still, ZooKeeper can recover using this snapshot because it takes
advantage of the idempotent nature of its updates. By replaying the transaction log against
fuzzy snapshots ZooKeeper gets the state of the system at the end of the log.

2.12.2 The Log Directory

The Log Directory contains the ZooKeeper transaction logs. Before any update takes place,
ZooKeeper ensures that the transaction that represents the update is written to non-volatile
storage. A new log file is started when the number of transactions written to the current log
file reaches a (variable) threshold. The threshold is computed using the same parameter
which influences the frequency of snapshotting (see snapCount above). The log file's suffix
is the first zxid written to that log.

2.12.3 File Management

The format of snapshot and log files does not change between standalone ZooKeeper servers
and different configurations of replicated ZooKeeper servers. Therefore, you can pull these
files from a running replicated ZooKeeper server to a development machine with a stand-
alone ZooKeeper server for trouble shooting.

Using older log and snapshot files, you can look at the previous state of ZooKeeper servers
and even restore that state. The LogFormatter class allows an administrator to look at the
transactions in a log.

The ZooKeeper server creates snapshot and log files, but never deletes them. The retention
policy of the data and log files is implemented outside of the ZooKeeper server. The
server itself only needs the latest complete fuzzy snapshot, all log files following it, and
the last log file preceding it. The latter requirement is necessary to include updates which
happened after this snapshot was started but went into the existing log file at that time. This
is possible because snapshotting and rolling over of logs proceed somewhat independently



ZooKeeper Administrator's Guide

Page 26Copyright ©  The Apache Software Foundation. All rights reserved.

in ZooKeeper. See the maintenance section in this document for more details on setting a
retention policy and maintenance of ZooKeeper storage.

Note:

The data stored in these files is not encrypted. In the case of storing sensitive data in ZooKeeper,
necessary measures need to be taken to prevent unauthorized access. Such measures are external to
ZooKeeper (e.g., control access to the files) and depend on the individual settings in which it is being
deployed.

2.12.4 Recovery - TxnLogToolkit

TxnLogToolkit is a command line tool shipped with ZooKeeper which is capable of
recovering transaction log entries with broken CRC.

Running it without any command line parameters or with the "-h,--help" argument, it outputs
the following help page:

          $ bin/zkTxnLogToolkit.sh

          usage: TxnLogToolkit [-dhrv] txn_log_file_name
          -d,--dump      Dump mode. Dump all entries of the log file. (this is the default)
          -h,--help      Print help message
          -r,--recover   Recovery mode. Re-calculate CRC for broken entries.
          -v,--verbose   Be verbose in recovery mode: print all entries, not just fixed
 ones.
          -y,--yes       Non-interactive mode: repair all CRC errors without asking
        

The default behaviour is safe: it dumps the entries of the given transaction log file to the
screen: (same as using '-d,--dump' parameter)

          $ bin/zkTxnLogToolkit.sh log.100000001
          ZooKeeper Transactional Log File with dbid 0 txnlog format version 2
          4/5/18 2:15:58 PM CEST session 0x16295bafcc40000 cxid 0x0 zxid 0x100000001
 createSession 30000
          CRC ERROR - 4/5/18 2:16:05 PM CEST session 0x16295bafcc40000 cxid 0x1 zxid
 0x100000002 closeSession null
          4/5/18 2:16:05 PM CEST session 0x16295bafcc40000 cxid 0x1 zxid 0x100000002
 closeSession null
          4/5/18 2:16:12 PM CEST session 0x26295bafcc90000 cxid 0x0 zxid 0x100000003
 createSession 30000
          4/5/18 2:17:34 PM CEST session 0x26295bafcc90000 cxid 0x0 zxid 0x200000001
 closeSession null
          4/5/18 2:17:34 PM CEST session 0x16295bd23720000 cxid 0x0 zxid 0x200000002
 createSession 30000
          4/5/18 2:18:02 PM CEST session 0x16295bd23720000 cxid 0x2 zxid 0x200000003 create
 '/andor,#626262,v{s{31,s{'world,'anyone}}},F,1
          EOF reached after 6 txns.
        



ZooKeeper Administrator's Guide

Page 27Copyright ©  The Apache Software Foundation. All rights reserved.

There's a CRC error in the 2nd entry of the above transaction log file. In dump mode,
the toolkit only prints this information to the screen without touching the original file. In
recovery mode (-r,--recover flag) the original file still remains untouched and all transactions
will be copied over to a new txn log file with ".fixed" suffix. It recalculates CRC values and
copies the calculated value, if it doesn't match the original txn entry. By default, the tool
works interactively: it asks for confirmation whenever CRC error encountered.

          $ bin/zkTxnLogToolkit.sh -r log.100000001
          ZooKeeper Transactional Log File with dbid 0 txnlog format version 2
          CRC ERROR - 4/5/18 2:16:05 PM CEST session 0x16295bafcc40000 cxid 0x1 zxid
 0x100000002 closeSession null
          Would you like to fix it (Yes/No/Abort) ?
        

Answering Yes means the newly calculated CRC value will be outputted to the new file. No
means that the original CRC value will be copied over. Abort will abort the entire operation
and exits. (In this case the ".fixed" will not be deleted and left in a half-complete state:
contains only entries which have already been processed or only the header if the operation
was aborted at the first entry.)

          $ bin/zkTxnLogToolkit.sh -r log.100000001
          ZooKeeper Transactional Log File with dbid 0 txnlog format version 2
          CRC ERROR - 4/5/18 2:16:05 PM CEST session 0x16295bafcc40000 cxid 0x1 zxid
 0x100000002 closeSession null
          Would you like to fix it (Yes/No/Abort) ? y
          EOF reached after 6 txns.
          Recovery file log.100000001.fixed has been written with 1 fixed CRC error(s)
        

The default behaviour of recovery is to be silent: only entries with CRC error get printed to
the screen. One can turn on verbose mode with the -v,--verbose parameter to see all records.
Interactive mode can be turned off with the -y,--yes parameter. In this case all CRC errors
will be fixed in the new transaction file.

2.13 Things to Avoid

Here are some common problems you can avoid by configuring ZooKeeper correctly:

inconsistent lists of servers
The list of ZooKeeper servers used by the clients must match the list of ZooKeeper
servers that each ZooKeeper server has. Things work okay if the client list is a subset of
the real list, but things will really act strange if clients have a list of ZooKeeper servers
that are in different ZooKeeper clusters. Also, the server lists in each Zookeeper server
configuration file should be consistent with one another.
incorrect placement of transaction log



ZooKeeper Administrator's Guide

Page 28Copyright ©  The Apache Software Foundation. All rights reserved.

The most performance critical part of ZooKeeper is the transaction log. ZooKeeper syncs
transactions to media before it returns a response. A dedicated transaction log device
is key to consistent good performance. Putting the log on a busy device will adversely
effect performance. If you only have one storage device, put trace files on NFS and
increase the snapshotCount; it doesn't eliminate the problem, but it should mitigate it.
incorrect Java heap size
You should take special care to set your Java max heap size correctly. In particular, you
should not create a situation in which ZooKeeper swaps to disk. The disk is death to
ZooKeeper. Everything is ordered, so if processing one request swaps the disk, all other
queued requests will probably do the same. the disk. DON'T SWAP.

Be conservative in your estimates: if you have 4G of RAM, do not set the Java max heap
size to 6G or even 4G. For example, it is more likely you would use a 3G heap for a 4G
machine, as the operating system and the cache also need memory. The best and only
recommend practice for estimating the heap size your system needs is to run load tests,
and then make sure you are well below the usage limit that would cause the system to
swap.
Publicly accessible deployment
A ZooKeeper ensemble is expected to operate in a trusted computing environment. It is
thus recommended to deploy ZooKeeper behind a firewall.

2.14 Best Practices

For best results, take note of the following list of good Zookeeper practices:

For multi-tenant installations see the section detailing ZooKeeper "chroot" support, this can
be very useful when deploying many applications/services interfacing to a single ZooKeeper
cluster.

zookeeperProgrammers.html#ch_zkSessions

	Table of contents
	1 Deployment
	1.1 System Requirements
	1.1.1 Supported Platforms
	1.1.2 Required Software

	1.2 Clustered (Multi-Server) Setup
	1.3 Single Server and Developer Setup

	2 Administration
	2.1 Designing a ZooKeeper Deployment
	2.1.1 Cross Machine Requirements
	2.1.2 Single Machine Requirements

	2.2 Provisioning
	2.3 Things to Consider: ZooKeeper Strengths and Limitations
	2.4 Administering
	2.5 Maintenance
	2.5.1 Ongoing Data Directory Cleanup
	2.5.2 Debug Log Cleanup (log4j)

	2.6 Supervision
	2.7 Monitoring
	2.8 Logging
	2.9 Troubleshooting
	2.10 Configuration Parameters
	2.10.1 Minimum Configuration
	2.10.2 Advanced Configuration
	2.10.3 Cluster Options
	2.10.4 Encryption, Authentication, Authorization Options
	2.10.5 Experimental Options/Features
	2.10.6 Unsafe Options
	2.10.7 Disabling data directory autocreation
	2.10.8 Enabling db existence validation
	2.10.9 Performance Tuning Options
	2.10.10 Communication using the Netty framework
	2.10.11 AdminServer configuration

	2.11 ZooKeeper Commands
	2.11.1 The Four Letter Words
	2.11.2 The AdminServer

	2.12 Data File Management
	2.12.1 The Data Directory
	2.12.2 The Log Directory
	2.12.3 File Management
	2.12.4 Recovery - TxnLogToolkit

	2.13 Things to Avoid
	2.14 Best Practices


