1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- To compile Hadoop Mapreduce next following, do the following:
- Step 1) Install dependencies for yarn
- See http://svn.apache.org/repos/asf/hadoop/common/trunk/hadoop-mapreduce/hadoop-yarn/README
- Make sure protbuf library is in your library path or set: export LD_LIBRARY_PATH=/usr/local/lib
- Step 2) Checkout
- svn checkout http://svn.apache.org/repos/asf/hadoop/common/trunk
- Step 3) Build common
- Go to common directory - choose your regular common build command
- Example: mvn clean install package -Pbintar -DskipTests
- Step 4) Build HDFS
- Go to hdfs directory
- ant veryclean mvn-install -Dresolvers=internal
- Step 5) Build yarn and mapreduce
- Go to mapreduce directory
- export MAVEN_OPTS=-Xmx512m
- mvn clean install assembly:assembly -DskipTests
- Copy in build.properties if appropriate - make sure eclipse.home not set
- ant veryclean tar -Dresolvers=internal
- You will see a tarball in
- ls target/hadoop-mapreduce-0.23.0-SNAPSHOT-all.tar.gz
- Step 6) Untar the tarball in a clean and different directory.
- say YARN_HOME.
- Make sure you aren't picking up avro-1.3.2.jar, remove:
- $HADOOP_COMMON_HOME/share/hadoop/common/lib/avro-1.3.2.jar
- $YARN_HOME/lib/avro-1.3.2.jar
- Step 7)
- Install hdfs/common and start hdfs
- To run Hadoop Mapreduce next applications:
- Step 8) export the following variables to where you have things installed:
- You probably want to export these in hadoop-env.sh and yarn-env.sh also.
- export HADOOP_MAPRED_HOME=<mapred loc>
- export HADOOP_COMMON_HOME=<common loc>
- export HADOOP_HDFS_HOME=<hdfs loc>
- export YARN_HOME=directory where you untarred yarn
- export HADOOP_CONF_DIR=<conf loc>
- export YARN_CONF_DIR=$HADOOP_CONF_DIR
- Step 9) Setup config: for running mapreduce applications, which now are in user land, you need to setup nodemanager with the following configuration in your yarn-site.xml before you start the nodemanager.
- <property>
- <name>yarn.nodemanager.aux-services</name>
- <value>mapreduce.shuffle</value>
- </property>
- <property>
- <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
- <value>org.apache.hadoop.mapred.ShuffleHandler</value>
- </property>
- Step 10) Modify mapred-site.xml to use yarn framework
- <property>
- <name> mapreduce.framework.name</name>
- <value>yarn</value>
- </property>
- Step 11) Create the following symlinks in $HADOOP_COMMON_HOME/share/hadoop/common/lib
- ln -s $YARN_HOME/modules/hadoop-mapreduce-client-app-0.23.0-SNAPSHOT.jar .
- ln -s $YARN_HOME/modules/hadoop-yarn-api-0.23.0-SNAPSHOT.jar .
- ln -s $YARN_HOME/modules/hadoop-mapreduce-client-common-0.23.0-SNAPSHOT.jar .
- ln -s $YARN_HOME/modules/hadoop-yarn-common-0.23.0-SNAPSHOT.jar .
- ln -s $YARN_HOME/modules/hadoop-mapreduce-client-core-0.23.0-SNAPSHOT.jar .
- ln -s $YARN_HOME/modules/hadoop-yarn-server-common-0.23.0-SNAPSHOT.jar .
- ln -s $YARN_HOME/modules/hadoop-mapreduce-client-jobclient-0.23.0-SNAPSHOT.jar .
- Step 12) cd $YARN_HOME
- Step 13) bin/yarn-daemon.sh start resourcemanager
- Step 14) bin/yarn-daemon.sh start nodemanager
- Step 15) bin/yarn-daemon.sh start historyserver
- Step 16) You are all set, an example on how to run a mapreduce job is:
- cd $HADOOP_MAPRED_HOME
- ant examples -Dresolvers=internal
- $HADOOP_COMMON_HOME/bin/hadoop jar $HADOOP_MAPRED_HOME/build/hadoop-mapreduce-examples-0.23.0-SNAPSHOT.jar randomwriter -Dmapreduce.job.user.name=$USER -Dmapreduce.clientfactory.class.name=org.apache.hadoop.mapred.YarnClientFactory -Dmapreduce.randomwriter.bytespermap=10000 -Ddfs.blocksize=536870912 -Ddfs.block.size=536870912 -libjars $YARN_HOME/modules/hadoop-mapreduce-client-jobclient-0.23.0-SNAPSHOT.jar output
- The output on the command line should be almost similar to what you see in the JT/TT setup (Hadoop 0.20/0.21)
|