123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
- <html>
- <!--
- Licensed to the Apache Software Foundation (ASF) under one or more
- contributor license agreements. See the NOTICE file distributed with
- this work for additional information regarding copyright ownership.
- The ASF licenses this file to You under the Apache License, Version 2.0
- (the "License"); you may not use this file except in compliance with
- the License. You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- -->
- <head>
- <title>Hadoop</title>
- </head>
- <body>
- Hadoop is a distributed computing platform.
- <p>Hadoop primarily consists of the <a
- href="org/apache/hadoop/hdfs/package-summary.html">Hadoop Distributed FileSystem
- (HDFS)</a> and an
- implementation of the <a href="org/apache/hadoop/mapred/package-summary.html">
- Map-Reduce</a> programming paradigm.</p>
- <p>Hadoop is a software framework that lets one easily write and run applications
- that process vast amounts of data. Here's what makes Hadoop especially useful:</p>
- <ul>
- <li>
- <b>Scalable</b>: Hadoop can reliably store and process petabytes.
- </li>
- <li>
- <b>Economical</b>: It distributes the data and processing across clusters
- of commonly available computers. These clusters can number into the thousands
- of nodes.
- </li>
- <li>
- <b>Efficient</b>: By distributing the data, Hadoop can process it in parallel
- on the nodes where the data is located. This makes it extremely rapid.
- </li>
- <li>
- <b>Reliable</b>: Hadoop automatically maintains multiple copies of data and
- automatically redeploys computing tasks based on failures.
- </li>
- </ul>
- <h2>Requirements</h2>
- <h3>Platforms</h3>
- <ul>
- <li>
- Hadoop was been demonstrated on GNU/Linux clusters with 2000 nodes.
- </li>
- <li>
- Win32 is supported as a <i>development</i> platform. Distributed operation
- has not been well tested on Win32, so this is not a <i>production</i>
- platform.
- </li>
- </ul>
-
- <h3>Requisite Software</h3>
- <ol>
- <li>
- Java 1.6.x, preferably from
- <a href="http://java.sun.com/javase/downloads/">Sun</a>.
- Set <tt>JAVA_HOME</tt> to the root of your Java installation.
- </li>
- <li>
- ssh must be installed and sshd must be running to use Hadoop's
- scripts to manage remote Hadoop daemons.
- </li>
- <li>
- rsync may be installed to use Hadoop's scripts to manage remote
- Hadoop installations.
- </li>
- </ol>
- <h4>Additional requirements for Windows</h4>
- <ol>
- <li>
- <a href="http://www.cygwin.com/">Cygwin</a> - Required for shell support in
- addition to the required software above.
- </li>
- </ol>
-
- <h3>Installing Required Software</h3>
- <p>If your platform does not have the required software listed above, you
- will have to install it.</p>
- <p>For example on Ubuntu Linux:</p>
- <p><blockquote><pre>
- $ sudo apt-get install ssh<br>
- $ sudo apt-get install rsync<br>
- </pre></blockquote></p>
- <p>On Windows, if you did not install the required software when you
- installed cygwin, start the cygwin installer and select the packages:</p>
- <ul>
- <li>openssh - the "Net" category</li>
- <li>rsync - the "Net" category</li>
- </ul>
- <h2>Getting Started</h2>
- <p>First, you need to get a copy of the Hadoop code.</p>
- <p>Edit the file <tt>conf/hadoop-env.sh</tt> to define at least
- <tt>JAVA_HOME</tt>.</p>
- <p>Try the following command:</p>
- <tt>bin/hadoop</tt>
- <p>This will display the documentation for the Hadoop command script.</p>
- <h2>Standalone operation</h2>
- <p>By default, Hadoop is configured to run things in a non-distributed
- mode, as a single Java process. This is useful for debugging, and can
- be demonstrated as follows:</p>
- <tt>
- mkdir input<br>
- cp conf/*.xml input<br>
- bin/hadoop jar hadoop-*-examples.jar grep input output 'dfs[a-z.]+'<br>
- cat output/*
- </tt>
- <p>This will display counts for each match of the <a
- href="http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html">
- regular expression.</a></p>
- <p>Note that input is specified as a <em>directory</em> containing input
- files and that output is also specified as a directory where parts are
- written.</p>
- <h2>Distributed operation</h2>
- To configure Hadoop for distributed operation you must specify the
- following:
- <ol>
- <li>The NameNode (Distributed Filesystem master) host. This is
- specified with the configuration property <tt><a
- href="../core-default.html#fs.default.name">fs.default.name</a></tt>.
- </li>
- <li>The {@link org.apache.hadoop.mapred.JobTracker} (MapReduce master)
- host and port. This is specified with the configuration property
- <tt><a
- href="../mapred-default.html#mapreduce.jobtracker.address">mapreduce.jobtracker.address</a></tt>.
- </li>
- <li>A <em>slaves</em> file that lists the names of all the hosts in
- the cluster. The default slaves file is <tt>conf/slaves</tt>.
- </ol>
- <h3>Pseudo-distributed configuration</h3>
- You can in fact run everything on a single host. To run things this
- way, put the following in:
- <br/>
- <br/>
- conf/core-site.xml:
- <xmp><configuration>
- <property>
- <name>fs.default.name</name>
- <value>hdfs://localhost/</value>
- </property>
- </configuration></xmp>
- conf/hdfs-site.xml:
- <xmp><configuration>
- <property>
- <name>dfs.replication</name>
- <value>1</value>
- </property>
- </configuration></xmp>
- conf/mapred-site.xml:
- <xmp><configuration>
- <property>
- <name>mapreduce.jobtracker.address</name>
- <value>localhost:9001</value>
- </property>
- </configuration></xmp>
- <p>(We also set the HDFS replication level to 1 in order to
- reduce warnings when running on a single node.)</p>
- <p>Now check that the command <br><tt>ssh localhost</tt><br> does not
- require a password. If it does, execute the following commands:</p>
- <p><tt>ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa<br>
- cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
- </tt></p>
- <h3>Bootstrapping</h3>
- <p>A new distributed filesystem must be formatted with the following
- command, run on the master node:</p>
- <p><tt>bin/hadoop namenode -format</tt></p>
- <p>The Hadoop daemons are started with the following command:</p>
- <p><tt>bin/start-all.sh</tt></p>
- <p>Daemon log output is written to the <tt>logs/</tt> directory.</p>
- <p>Input files are copied into the distributed filesystem as follows:</p>
- <p><tt>bin/hadoop fs -put input input</tt></p>
- <h3>Distributed execution</h3>
- <p>Things are run as before, but output must be copied locally to
- examine it:</p>
- <tt>
- bin/hadoop jar hadoop-*-examples.jar grep input output 'dfs[a-z.]+'<br>
- bin/hadoop fs -get output output
- cat output/*
- </tt>
- <p>When you're done, stop the daemons with:</p>
- <p><tt>bin/stop-all.sh</tt></p>
- <h3>Fully-distributed operation</h3>
- <p>Fully distributed operation is just like the pseudo-distributed operation
- described above, except, specify:</p>
- <ol>
- <li>The hostname or IP address of your master server in the value
- for <tt><a
- href="../core-default.html#fs.default.name">fs.default.name</a></tt>,
- as <tt><em>hdfs://master.example.com/</em></tt> in <tt>conf/core-site.xml</tt>.</li>
- <li>The host and port of the your master server in the value
- of <tt><a href="../mapred-default.html#mapreduce.jobtracker.address">mapreduce.jobtracker.address</a></tt>
- as <tt><em>master.example.com</em>:<em>port</em></tt> in <tt>conf/mapred-site.xml</tt>.</li>
- <li>Directories for <tt><a
- href="../hdfs-default.html#dfs.name.dir">dfs.name.dir</a></tt> and
- <tt><a href="../hdfs-default.html#dfs.data.dir">dfs.data.dir</a>
- in <tt>conf/hdfs-site.xml</tt>.
- </tt>These are local directories used to hold distributed filesystem
- data on the master node and slave nodes respectively. Note
- that <tt>dfs.data.dir</tt> may contain a space- or comma-separated
- list of directory names, so that data may be stored on multiple local
- devices.</li>
- <li><tt><a href="../mapred-default.html#mapreduce.cluster.local.dir">mapreduce.cluster.local.dir</a></tt>
- in <tt>conf/mapred-site.xml</tt>, the local directory where temporary
- MapReduce data is stored. It also may be a list of directories.</li>
- <li><tt><a
- href="../mapred-default.html#mapreduce.job.maps">mapreduce.job.maps</a></tt>
- and <tt><a
- href="../mapred-default.html#mapreduce.job.reduces">mapreduce.job.reduces</a></tt>
- in <tt>conf/mapred-site.xml</tt>.
- As a rule of thumb, use 10x the
- number of slave processors for <tt>mapreduce.job.maps</tt>, and 2x the
- number of slave processors for <tt>mapreduce.job.reduces</tt>.</li>
- </ol>
- <p>Finally, list all slave hostnames or IP addresses in your
- <tt>conf/slaves</tt> file, one per line. Then format your filesystem
- and start your cluster on your master node, as above.
- </body>
- </html>
|