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1. Introduction

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on
commodity hardware. It has many similarities with existing distributed file systems.
However, the differences from other distributed file systems are significant. HDFS is highly
fault-tolerant and is designed to be deployed on low-cost hardware. HDFS provides high
throughput access to application data and is suitable for applications that have large data sets.
HDFS relaxes a few POSIX requirements to enable streaming access to file system data.
HDFS was originally built as infrastructure for the Apache Nutch web search engine project.
HDFS is part of the Apache Hadoop Core project. The project URL is
http://hadoop.apache.org/core/.

2. Assumptions and Goals

2.1. Hardware Failure

Hardware failure is the norm rather than the exception. An HDFS instance may consist of
hundreds or thousands of server machines, each storing part of the file system’s data. The
fact that there are a huge number of components and that each component has a non-trivial
probability of failure means that some component of HDFS is always non-functional.
Therefore, detection of faults and quick, automatic recovery from them is a core architectural
goal of HDFS.

2.2. Streaming Data Access

Applications that run on HDFS need streaming access to their data sets. They are not general
purpose applications that typically run on general purpose file systems. HDFS is designed
more for batch processing rather than interactive use by users. The emphasis is on high
throughput of data access rather than low latency of data access. POSIX imposes many hard
requirements that are not needed for applications that are targeted for HDFS. POSIX
semantics in a few key areas has been traded to increase data throughput rates.

2.3. Large Data Sets

Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes to
terabytes in size. Thus, HDFS is tuned to support large files. It should provide high aggregate
data bandwidth and scale to hundreds of nodes in a single cluster. It should support tens of
millions of files in a single instance.

The Hadoop Distributed File System: Architecture and Design

Page 3
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://hadoop.apache.org/core/


2.4. Simple Coherency Model

HDFS applications need a write-once-read-many access model for files. A file once created,
written, and closed need not be changed. This assumption simplifies data coherency issues
and enables high throughput data access. A MapReduce application or a web crawler
application fits perfectly with this model. There is a plan to support appending-writes to files
in the future.

2.5. “Moving Computation is Cheaper than Moving Data”

A computation requested by an application is much more efficient if it is executed near the
data it operates on. This is especially true when the size of the data set is huge. This
minimizes network congestion and increases the overall throughput of the system. The
assumption is that it is often better to migrate the computation closer to where the data is
located rather than moving the data to where the application is running. HDFS provides
interfaces for applications to move themselves closer to where the data is located.

2.6. Portability Across Heterogeneous Hardware and Software Platforms

HDFS has been designed to be easily portable from one platform to another. This facilitates
widespread adoption of HDFS as a platform of choice for a large set of applications.

3. Namenode and Datanodes

HDFS has a master/slave architecture. An HDFS cluster consists of a single Namenode, a
master server that manages the file system namespace and regulates access to files by clients.
In addition, there are a number of Datanodes, usually one per node in the cluster, which
manage storage attached to the nodes that they run on. HDFS exposes a file system
namespace and allows user data to be stored in files. Internally, a file is split into one or more
blocks and these blocks are stored in a set of Datanodes. The Namenode executes file system
namespace operations like opening, closing, and renaming files and directories. It also
determines the mapping of blocks to Datanodes. The Datanodes are responsible for serving
read and write requests from the file system’s clients. The Datanodes also perform block
creation, deletion, and replication upon instruction from the Namenode.
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The Namenode and Datanode are pieces of software designed to run on commodity
machines. These machines typically run a GNU/Linux operating system (OS). HDFS is built
using the Java language; any machine that supports Java can run the Namenode or the
Datanode software. Usage of the highly portable Java language means that HDFS can be
deployed on a wide range of machines. A typical deployment has a dedicated machine that
runs only the Namenode software. Each of the other machines in the cluster runs one instance
of the Datanode software. The architecture does not preclude running multiple Datanodes on
the same machine but in a real deployment that is rarely the case.

The existence of a single Namenode in a cluster greatly simplifies the architecture of the
system. The Namenode is the arbitrator and repository for all HDFS metadata. The system is
designed in such a way that user data never flows through the Namenode.

4. The File System Namespace

HDFS supports a traditional hierarchical file organization. A user or an application can create
directories and store files inside these directories. The file system namespace hierarchy is
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similar to most other existing file systems; one can create and remove files, move a file from
one directory to another, or rename a file. HDFS does not yet implement user quotas or
access permissions. HDFS does not support hard links or soft links. However, the HDFS
architecture does not preclude implementing these features.

The Namenode maintains the file system namespace. Any change to the file system
namespace or its properties is recorded by the Namenode. An application can specify the
number of replicas of a file that should be maintained by HDFS. The number of copies of a
file is called the replication factor of that file. This information is stored by the Namenode.

5. Data Replication

HDFS is designed to reliably store very large files across machines in a large cluster. It stores
each file as a sequence of blocks; all blocks in a file except the last block are the same size.
The blocks of a file are replicated for fault tolerance. The block size and replication factor are
configurable per file. An application can specify the number of replicas of a file. The
replication factor can be specified at file creation time and can be changed later. Files in
HDFS are write-once and have strictly one writer at any time.

The Namenode makes all decisions regarding replication of blocks. It periodically receives a
Heartbeat and a Blockreport from each of the Datanodes in the cluster. Receipt of a
Heartbeat implies that the Datanode is functioning properly. A Blockreport contains a list of
all blocks on a Datanode.

The Hadoop Distributed File System: Architecture and Design

Page 6
Copyright © 2007 The Apache Software Foundation. All rights reserved.



5.1. Replica Placement: The First Baby Steps

The placement of replicas is critical to HDFS reliability and performance. Optimizing replica
placement distinguishes HDFS from most other distributed file systems. This is a feature that
needs lots of tuning and experience. The purpose of a rack-aware replica placement policy is
to improve data reliability, availability, and network bandwidth utilization. The current
implementation for the replica placement policy is a first effort in this direction. The
short-term goals of implementing this policy are to validate it on production systems, learn
more about its behavior, and build a foundation to test and research more sophisticated
policies.

Large HDFS instances run on a cluster of computers that commonly spread across many
racks. Communication between two nodes in different racks has to go through switches. In
most cases, network bandwidth between machines in the same rack is greater than network
bandwidth between machines in different racks.

At startup time, each Datanode determines the rack it belongs to and notifies the Namenode
of its rack id upon registration. HDFS provides APIs to facilitate pluggable modules that can
be used to determine the rack id of a machine. A simple but non-optimal policy is to place
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replicas on unique racks. This prevents losing data when an entire rack fails and allows use
of bandwidth from multiple racks when reading data. This policy evenly distributes replicas
in the cluster which makes it easy to balance load on component failure. However, this policy
increases the cost of writes because a write needs to transfer blocks to multiple racks.

For the common case, when the replication factor is three, HDFS’s placement policy is to put
one replica on one node in the local rack, another on a different node in the local rack, and
the last on a different node in a different rack. This policy cuts the inter-rack write traffic
which generally improves write performance. The chance of rack failure is far less than that
of node failure; this policy does not impact data reliability and availability guarantees.
However, it does reduce the aggregate network bandwidth used when reading data since a
block is placed in only two unique racks rather than three. With this policy, the replicas of a
file do not evenly distribute across the racks. One third of replicas are on one node, two
thirds of replicas are on one rack, and the other third are evenly distributed across the
remaining racks. This policy improves write performance without compromising data
reliability or read performance.

The current, default replica placement policy described here is a work in progress.

5.2. Replica Selection

To minimize global bandwidth consumption and read latency, HDFS tries to satisfy a read
request from a replica that is closest to the reader. If there exists a replica on the same rack as
the reader node, then that replica is preferred to satisfy the read request. If angg/ HDFS
cluster spans multiple data centers, then a replica that is resident in the local data center is
preferred over any remote replica.

5.3. SafeMode

On startup, the Namenode enters a special state called Safemode. Replication of data blocks
does not occur when the Namenode is in the Safemode state. The Namenode receives
Heartbeat and Blockreport messages from the Datanodes. A Blockreport contains the list of
data blocks that a Datanode is hosting. Each block has a specified minimum number of
replicas. A block is considered safely replicated when the minimum number of replicas of
that data block has checked in with the Namenode. After a configurable percentage of safely
replicated data blocks checks in with the Namenode (plus an additional 30 seconds), the
Namenode exits the Safemode state. It then determines the list of data blocks (if any) that
still have fewer than the specified number of replicas. The Namenode then replicates these
blocks to other Datanodes.

6. The Persistence of File System Metadata
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The HDFS namespace is stored by the Namenode. The Namenode uses a transaction log
called the EditLog to persistently record every change that occurs to file system metadata.
For example, creating a new file in HDFS causes the Namenode to insert a record into the
EditLog indicating this. Similarly, changing the replication factor of a file causes a new
record to be inserted into the EditLog. The Namenode uses a file in its local host OS file
system to store the EditLog. The entire file system namespace, including the mapping of
blocks to files and file system properties, is stored in a file called the FsImage. The FsImage
is stored as a file in the Namenode’s local file system too.

The Namenode keeps an image of the entire file system namespace and file Blockmap in
memory. This key metadata item is designed to be compact, such that a Namenode with 4
GB of RAM is plenty to support a huge number of files and directories. When the Namenode
starts up, it reads the FsImage and EditLog from disk, applies all the transactions from the
EditLog to the in-memory representation of the FsImage, and flushes out this new version
into a new FsImage on disk. It can then truncate the old EditLog because its transactions
have been applied to the persistent FsImage. This process is called a checkpoint. In the
current implementation, a checkpoint only occurs when the Namenode starts up. Work is in
progress to support periodic checkpointing in the near future.

The Datanode stores HDFS data in files in its local file system. The Datanode has no
knowledge about HDFS files. It stores each block of HDFS data in a separate file in its local
file system. The Datanode does not create all files in the same directory. Instead, it uses a
heuristic to determine the optimal number of files per directory and creates subdirectories
appropriately. It is not optimal to create all local files in the same directory because the local
file system might not be able to efficiently support a huge number of files in a single
directory. When a Datanode starts up, it scans through its local file system, generates a list of
all HDFS data blocks that correspond to each of these local files and sends this report to the
Namenode: this is the Blockreport.

7. The Communication Protocols

All HDFS communication protocols are layered on top of the TCP/IP protocol. A client
establishes a connection to a configurable TCP port on the Namenode machine. It talks the
ClientProtocol with the Namenode. The Datanodes talk to the Namenode using the
DatanodeProtocol. A Remote Procedure Call (RPC) abstraction wraps both the
ClientProtocol and the DatanodeProtocol. By design, the Namenode never initiates any
RPCs. Instead, it only responds to RPC requests issued by Datanodes or clients.

8. Robustness

The primary objective of HDFS is to store data reliably even in the presence of failures. The
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three common types of failures are Namenode failures, Datanode failures and network
partitions.

8.1. Data Disk Failure, Heartbeats and Re-Replication

Each Datanode sends a Heartbeat message to the Namenode periodically. A network
partition can cause a subset of Datanodes to lose connectivity with the Namenode. The
Namenode detects this condition by the absence of a Heartbeat message. The Namenode
marks Datanodes without recent Heartbeats as dead and does not forward any new IO
requests to them. Any data that was registered to a dead Datanode is not available to HDFS
any more. Datanode death may cause the replication factor of some blocks to fall below their
specified value. The Namenode constantly tracks which blocks need to be replicated and
initiates replication whenever necessary. The necessity for re-replication may arise due to
many reasons: a Datanode may become unavailable, a replica may become corrupted, a hard
disk on a Datanode may fail, or the replication factor of a file may be increased.

8.2. Cluster Rebalancing

The HDFS architecture is compatible with data rebalancing schemes. A scheme might
automatically move data from one Datanode to another if the free space on a Datanode falls
below a certain threshold. In the event of a sudden high demand for a particular file, a
scheme might dynamically create additional replicas and rebalance other data in the cluster.
These types of data rebalancing schemes are not yet implemented.

8.3. Data Integrity

It is possible that a block of data fetched from a Datanode arrives corrupted. This corruption
can occur because of faults in a storage device, network faults, or buggy software. The HDFS
client software implements checksum checking on the contents of HDFS files. When a client
creates an HDFS file, it computes a checksum of each block of the file and stores these
checksums in a separate hidden file in the same HDFS namespace. When a client retrieves
file contents it verifies that the data it received from each Datanode matches the checksum
stored in the associated checksum file. If not, then the client can opt to retrieve that block
from another Datanode that has a replica of that block.

8.4. Metadata Disk Failure

The FsImage and the EditLog are central data structures of HDFS. A corruption of these files
can cause the HDFS instance to be non-functional. For this reason, the Namenode can be
configured to support maintaining multiple copies of the FsImage and EditLog. Any update
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to either the FsImage or EditLog causes each of the FsImages and EditLogs to get updated
synchronously. This synchronous updating of multiple copies of the FsImage and EditLog
may degrade the rate of namespace transactions per second that a Namenode can support.
However, this degradation is acceptable because even though HDFS applications are very
data intensive in nature, they are not metadata intensive. When a Namenode restarts, it
selects the latest consistent FsImage and EditLog to use.

The Namenode machine is a single point of failure for an HDFS cluster. If the Namenode
machine fails, manual intervention is necessary. Currently, automatic restart and failover of
the Namenode software to another machine is not supported.

8.5. Snapshots

Snapshots support storing a copy of data at a particular instant of time. One usage of the
snapshot feature may be to roll back a corrupted HDFS instance to a previously known good
point in time. HDFS does not currently support snapshots but will in a future release.

9. Data Organization

9.1. Data Blocks

HDFS is designed to support very large files. Applications that are compatible with HDFS
are those that deal with large data sets. These applications write their data only once but they
read it one or more times and require these reads to be satisfied at streaming speeds. HDFS
supports write-once-read-many semantics on files. A typical block size used by HDFS is 64
MB. Thus, an HDFS file is chopped up into 64 MB chunks, and if possible, each chunk will
reside on a different Datanode.

9.2. Staging

A client request to create a file does not reach the Namenode immediately. In fact, initially
the HDFS client caches the file data into a temporary local file. Application writes are
transparently redirected to this temporary local file. When the local file accumulates data
worth over one HDFS block size, the client contacts the Namenode. The Namenode inserts
the file name into the file system hierarchy and allocates a data block for it. The Namenode
responds to the client request with the identity of the Datanode and the destination data
block. Then the client flushes the block of data from the local temporary file to the specified
Datanode. When a file is closed, the remaining un-flushed data in the temporary local file is
transferred to the Datanode. The client then tells the Namenode that the file is closed. At this
point, the Namenode commits the file creation operation into a persistent store. If the
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Namenode dies before the file is closed, the file is lost.

The above approach has been adopted after careful consideration of target applications that
run on HDFS. These applications need streaming writes to files. If a client writes to a remote
file directly without any client side buffering, the network speed and the congestion in the
network impacts throughput considerably. This approach is not without precedent. Earlier
distributed file systems, e.g. AFS, have used client side caching to improve performance. A
POSIX requirement has been relaxed to achieve higher performance of data uploads.

9.3. Replication Pipelining

When a client is writing data to an HDFS file, its data is first written to a local file as
explained in the previous section. Suppose the HDFS file has a replication factor of three.
When the local file accumulates a full block of user data, the client retrieves a list of
Datanodes from the Namenode. This list contains the Datanodes that will host a replica of
that block. The client then flushes the data block to the first Datanode. The first Datanode
starts receiving the data in small portions (4 KB), writes each portion to its local repository
and transfers that portion to the second Datanode in the list. The second Datanode, in turn
starts receiving each portion of the data block, writes that portion to its repository and then
flushes that portion to the third Datanode. Finally, the third Datanode writes the data to its
local repository. Thus, a Datanode can be receiving data from the previous one in the
pipeline and at the same time forwarding data to the next one in the pipeline. Thus, the data is
pipelined from one Datanode to the next.

10. Accessibility

HDFS can be accessed from applications in many different ways. Natively, HDFS provides a
Java API for applications to use. A C language wrapper for this Java API is also available. In
addition, an HTTP browser can also be used to browse the files of an HDFS instance. Work
is in progress to expose HDFS through the WebDAV protocol.

10.1. DFSShell

HDFS allows user data to be organized in the form of files and directories. It provides a
commandline interface called DFSShell that lets a user interact with the data in HDFS. The
syntax of this command set is similar to other shells (e.g. bash, csh) that users are already
familiar with. Here are some sample action/command pairs:

Action Command

Create a directory named /foodir bin/hadoop dfs -mkdir /foodir
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Create a directory named /foodir bin/hadoop dfs -mkdir /foodir

View the contents of a file named
/foodir/myfile.txt

bin/hadoop dfs -cat
/foodir/myfile.txt

DFSShell is targeted for applications that need a scripting language to interact with the stored
data.

10.2. DFSAdmin

The DFSAdmin command set is used for administering an HDFS cluster. These are
commands that are used only by an HDFS administrator. Here are some sample
action/command pairs:

Action Command

Put a cluster in SafeMode bin/hadoop dfsadmin -safemode enter

Generate a list of Datanodes bin/hadoop dfsadmin -report

Decommission Datanode datanodename bin/hadoop dfsadmin -decommission
datanodename

10.3. Browser Interface

A typical HDFS install configures a web server to expose the HDFS namespace through a
configurable TCP port. This allows a user to navigate the HDFS namespace and view the
contents of its files using a web browser.

11. Space Reclamation

11.1. File Deletes and Undeletes

When a file is deleted by a user or an application, it is not immediately removed from HDFS.
Instead, HDFS first renames it to a file in the /trash directory. The file can be restored
quickly as long as it remains in /trash. A file remains in /trash for a configurable
amount of time. After the expiry of its life in /trash, the Namenode deletes the file from
the HDFS namespace. The deletion of a file causes the blocks associated with the file to be
freed. Note that there could be an appreciable time delay between the time a file is deleted by
a user and the time of the corresponding increase in free space in HDFS.

A user can Undelete a file after deleting it as long as it remains in the /trash directory. If a
user wants to undelete a file that he/she has deleted, he/she can navigate the /trash
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directory and retrieve the file. The /trash directory contains only the latest copy of the file
that was deleted. The /trash directory is just like any other directory with one special
feature: HDFS applies specified policies to automatically delete files from this directory. The
current default policy is to delete files from /trash that are more than 6 hours old. In the
future, this policy will be configurable through a well defined interface.

11.2. Decrease Replication Factor

When the replication factor of a file is reduced, the Namenode selects excess replicas that can
be deleted. The next Heartbeat transfers this information to the Datanode. The Datanode then
removes the corresponding blocks and the corresponding free space appears in the cluster.
Once again, there might be a time delay between the completion of the setReplication
API call and the appearance of free space in the cluster.

12. References

HDFS Java API: http://hadoop.apache.org/core/docs/current/api/

HDFS source code: http://hadoop.apache.org/core/version_control.html
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