Hadoop Map/Reduce Tutorial

Table of contents

070 PRSP 2
P (= (=0 U 1 (=SSR 2
S OVEIVIBIW. ..ttt b et s ae e b e et e e ae e eb e e a b e e he e nbe et e eRe e beeneenheenbeenbeeneenreas 2
4 INPULS @NA OULPULS.......eeeveeieitiesie et este et seesteesteeee e e ssesseesseessesseesseesesnsesseensesnnesees 3
5 Example: WOrdCoUNt VL.0........c.coiieieiieniecie et eee e te et sne e e nne e nns 3
T IS0 1 £ 0/ =X o [3
B2 USAOR. ...ttt et s n e nre e 6
5.3 WalK-tNIOUGN.......eeeeee et naeas 7
6 MaP/REAUCE - USEY INTEITACES.......eiiiiee ettt nree s 9
LTI = (Y] o o P 9
(372N o o T @Xe a1 110U = 1 o o SR 13
6.3 Task EXeCUtioN & ENVIFONMENL.........c.ccoveiereereeieseese e seese e e sae e e e nse e sneees 14
6.4 Job SUPMISSION aNA MONITOMTNG......cviiiiieiirieeieeeeee e 21
(ST o o I8 1 0] o1 | SR 22
LSRN 0] o @ 1 11| SRS 23
6.7 Other USEfUl FEAIUIES..........eiiiiieieeieiesie ettt 25
7 Example: WOrdCoUNE V2.0.......c..coiieieeieeeeie s esie e e e sae e ae e sneenesneenneas 30
A RS o 1 (0T o [SRS 31
7.2 SAMPIE RUNS.......eiee ettt r b e e 37

23 L0 0110 SRR 38

Hadoop Map/Reduce Tutorial

1. Purpose

This document comprehensively describes al user-facing facets of the Hadoop Map/Reduce
framework and serves as atutorial.

2. Pre-requisites

Ensure that Hadoop isinstalled, configured and is running. More details:

» Hadoop Quick Start for first-time users.
» Hadoop Cluster Setup for large, distributed clusters.

3. Overview

Hadoop Map/Reduce is a software framework for easily writing applications which process
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of
nodes) of commodity hardware in areliable, fault-tolerant manner.

A Map/Reduce job usually splits the input data-set into independent chunks which are
processed by the map tasksin a completely parallel manner. The framework sorts the outputs
of the maps, which are then input to the reduce tasks. Typically both the input and the output
of the job are stored in afile-system. The framework takes care of scheduling tasks,
monitoring them and re-executes the failed tasks.

Typically the compute nodes and the storage nodes are the same, that is, the Map/Reduce
framework and the Hadoop Distributed File System (see HDES Architecture) are running on
the same set of nodes. This configuration allows the framework to effectively schedule tasks
on the nodes where datais already present, resulting in very high aggregate bandwidth across
the cluster.

The Map/Reduce framework consists of asingle master JobTr acker and one slave
TaskTr acker per cluster-node. The master is responsible for scheduling the jobs
component tasks on the slaves, monitoring them and re-executing the failed tasks. The slaves
execute the tasks as directed by the master.

Minimally, applications specify the input/output locations and supply map and reduce
functions viaimplementations of appropriate interfaces and/or abstract-classes. These, and
other job parameters, comprise the job configuration. The Hadoop job client then submits the
job (jar/executable etc.) and configuration to the JobTr acker which then assumes the
responsibility of distributing the software/configuration to the slaves, scheduling tasks and
monitoring them, providing status and diagnostic information to the job-client.

Page 2

quickstart.html
cluster_setup.html
hdfs_design.html

Hadoop Map/Reduce Tutorial

Although the Hadoop framework is implemented in JavaTM, Map/Reduce applications need
not be written in Java.

« Hadoop Streaming is a utility which allows users to create and run jobs with any
executables (e.g. shell utilities) as the mapper and/or the reducer.

» Hadoop Pipesisa SWIG- compatible C++ API to implement Map/Reduce applications
(non INITM based).

4. Inputs and Outputs

The Map/Reduce framework operates exclusively on <key, val ue> pairs, that is, the
framework views the input to the job as a set of <key, val ue> pairsand produces a set of
<key, val ue> pairsasthe output of the job, conceivably of different types.

Thekey and val ue classes have to be serializable by the framework and hence need to
implement the Writable interface. Additionally, the key classes have to implement the
WritableComparable interface to facilitate sorting by the framework.

Input and Output types of a Map/Reduce job:

(input) <k1, v1>->map-><k2, v2>->combine-><k2, v2>->reduce-><k3,
v 3> (output)

5. Example: WordCount v1.0

Before we jump into the details, lets walk through an example Map/Reduce application to get
aflavour for how they work.

Wor dCount isasimple application that counts the number of occurences of each word in a
given input set.

This works with alocal-standal one, pseudo-distributed or fully-distributed Hadoop
install ation(see Hadoop Quick Start).

5.1. Source Code

package org. nyorg;

i mport java.io. | OException;

Plo(d]P#

i mport java.util.*;

Page 3

api/org/apache/hadoop/streaming/package-summary.html
api/org/apache/hadoop/mapred/pipes/package-summary.html
http://www.swig.org/
api/org/apache/hadoop/io/Writable.html
api/org/apache/hadoop/io/WritableComparable.html
quickstart.html

|l N o

11.
12.
13.
14.

15.

16.
17.
18.

19.
20.

21.

22.

23.
24,
25.

Hadoop Map/Reduce Tutorial

i mport org.apache. hadoop. fs. Pat h;
i mport org.apache. hadoop. conf. *;

i mport org. apache. hadoop.io. *;

i mport org.apache. hadoop. mapred. *;

i mport org.apache. hadoop. util.*;

public class WrdCount {

public static class Map extends
MapReduceBase i npl enent s
Mapper <LongW it abl e, Text, Text,
IntWitable> {

private final static IntWitable
one = new IntWitable(l);

private Text word = new Text();

public void map(LongWitabl e key,
Text val ue, Qut put Col | ect or <Text,
IntWitabl e> output, Reporter
reporter) throws | OException {

String line = value.toString();

StringTokeni zer tokenizer = new
StringTokeni zer (line);

whi | e
(t okeni zer . hasMvbr eTokens()) {
wor d. set (t okeni zer . next Token());
out put . col | ect (word, one);
}
}

Page 4

Hadoop Map/Reduce Tutorial

26. }
27.
28. public static class Reduce extends

MapReduceBase i npl ement s
Reducer <Text, IntWitable, Text,
IntWitable> {

29. public void reduce(Text key,
Iterator<intWitabl e> val ues,
Qut put Col | ect or<Text, IntWitabl e>
out put, Reporter reporter) throws

| OException {
30. int sum= 0;
31. whi |l e (val ues. hasNext ()) {
32. sum += val ues. next (). get();
33. }
34. out put . col | ect (key, new
IntWitable(sum);
35. }
36. }
37.
38. public static void main(String[]
args) throws Exception {
39. JobConf conf = new
JobConf (Wr dCount . cl ass) ;
40. conf . set JobNanme("wordcount");
41.
42.
conf . set Qut put Keyd ass(Text. cl ass);
43.
conf . set Qut put Val ued ass(I ntWitable.class);
44.
45, conf . set Mapper d ass(Map. cl ass);

Page 5

46.
47.

48.
49,

50.

51.
52.

53.

54,
55.
57.
58.
59.

5.2. Usage

Hadoop Map/Reduce Tutorial

conf . set Conbi ner d ass(Reduce. cl ass);

conf . set Reducer O ass(Reduce. cl ass);

conf. set | nput For mat (Text | nput For mat . cl ass) ;

conf . set Qut put For mat (Text Qut put For mat . cl ass) ;

Fi | el nput For mat . set | nput Pat hs(conf,

new Pat h(args[0])):

Fi | eQut put For mat . set Qut put Pat h(conf,
new Path(args[1]));

Jobd i ent.runJob(conf);
}

Assuming HADOOP_HQWVE isthe root of the installation and HADOOP_VERSI ONisthe
Hadoop version installed, compile Wor dCount . j ava and create ajar:

$ nkdir wordcount cl asses
$ javac -classpath

${ HADOOP_HQOVE} / hadoop- ${ HADOOP_VERSI ON} - core. jar -d
wor dcount _cl asses WordCount . j ava
$ jar -cvf /usr/joe/wordcount.jar -C wordcount_cl asses/

Assuming that:
[usr/j oe/wordcount/input -inputdirectory in HDFS

Page 6

Hadoop Map/Reduce Tutorial

e /usr/joel/wordcount/out put -output directory in HDFS
Sample text-files asinput:

$ bin/ hadoop dfs -Is /usr/joe/wordcount/input/

[usr/joe/wordcount/input/fileOl

[usr/joe/wordcount/input/file02

$ bi n/ hadoop dfs -cat /usr/joe/wordcount/input/fileOl
Hello Wrld Bye Wrld

$ bi n/ hadoop dfs -cat /usr/joe/wordcount/input/file02
Hel | o Hadoop Goodbye Hadoop

Run the application:

$ bi n/ hadoop jar /usr/joe/wordcount.jar org. morg. WrdCount
[usr/joel/wordcount/input /usr/joe/wordcount/out put

Output:

$ bi n/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1

Goodbye 1

Hadoop 2

Hello 2

Wrld 2

Applications can specify a comma separated list of paths which would be present in the
current working directory of the task using the option-fi | es. The- | i bj ar s option
allows applications to add jars to the classpaths of the maps and reduces. The - ar chi ves
allows them to pass archives as arguments that are unzipped/unjarred and a link with name of
thejar/zip are created in the current working directory of tasks. More details about the
command line options are available at Hadoop Command Guide.

Running wor dcount examplewith-11i bjarsand-fil es:
hadoop j ar hadoop- exanpl es.jar wordcount -files cachefile.txt
-libjars nylib.jar input output

5.3. Walk-through

The Wor dCount application is quite straight-forward.

The Mapper implementation (lines 14-26), viathe map method (lines 18-25), processes one
line at atime, as provided by the specified Text | nput For mat (line 49). It then splits the
line into tokens separated by whitespaces, viathe St r i ngTokeni zer , and emitsa

Page 7

commands_manual.html

Hadoop Map/Reduce Tutorial

key-value pair of < <wor d>, 1>,

For the given sample input the first map emits:
< Hello, 1>

< Wrld, 1>

< Bye, 1>

< Wrld, 1>

The second map emits:
< Hello, 1>

< Hadoop, 1>

< Goodbye, 1>

< Hadoop, 1>

WE'll learn more about the number of maps spawned for a given job, and how to control
them in afine-grained manner, abit later in the tutorial.

Wor dCount also specifiesacomnbi ner (line 46). Hence, the output of each map is passed
through the local combiner (which is same asthe Reducer as per the job configuration) for
local aggregation, after being sorted on the keys.

The output of the first map:

< Bye, 1>
< Hello, 1>
< Wrld, 2>

The output of the second map:
< Goodbye, 1>

< Hadoop, 2>

< Hello, 1>

The Reducer implementation (lines 28-36), viather educe method (lines 29-35) just
sums up the values, which are the occurence counts for each key (i.e. wordsin this example).

Thus the output of the job is:
< Bye, 1>

Goodbye, 1>
Hadoop, 2>

Hel | 0, 2>

Wrld, 2>

Ther un method specifies various facets of the job, such as the input/output paths (passed
viathe command line), key/value types, input/output formats etc., in the JobConf . It then
callstheJobd i ent . r unJob (line 55) to submit the and monitor its progress.

<
<
<
<

Page 8

Hadoop Map/Reduce Tutorial

Wel'll learn more about JobConf , JobCl i ent , Tool and other interfaces and classes a bit
later in the tutorial.

6. Map/Reduce - User Interfaces

This section provides a reasonable amount of detail on every user-facing aspect of the
Map/Reduce framwork. This should help users implement, configure and tune their jobsin a
fine-grained manner. However, please note that the javadoc for each class/interface remains
the most comprehensive documentation available; thisis only meant to be atutorial.

Let usfirst takethe Mapper and Reducer interfaces. Applications typically implement
them to provide the map and r educe methods.

We will then discuss other core interfacesincluding JobConf , Jobd i ent ,
Partitioner,Qut put Col | ector,Reporter, | nput For mat, Qut put For mat ,
Qut put Commi t t er and others.

Finally, we will wrap up by discussing some useful features of the framework such as the
Di stri but edCache, | sol ati onRunner etc.

6.1. Payload

Applications typically implement the Mapper and Reducer interfacesto provide the map
and r educe methods. These form the core of the job.

6.1.1. Mapper
Mapper maps input key/value pairs to a set of intermediate key/value pairs.

Maps are the individual tasks that transform input records into intermediate records. The
transformed intermediate records do not need to be of the same type as the input records. A
given input pair may map to zero or many output pairs.

The Hadoop Map/Reduce framework spawns one map task for each | nput Spl i t
generated by the | nput For mat for the job.

Overall, Mapper implementations are passed the JobConf for thejob viathe
JobConfigurable.configure(JobConf) method and override it to initialize themselves. The
framework then calls map(WritableComparable, Writable, OutputCollector, Reporter) for
each key/value pair inthe | nput Spl i t for that task. Applications can then override the
Closeable.close() method to perform any required cleanup.

Output pairs do not need to be of the same types asinput pairs. A given input pair may map

Page 9

api/org/apache/hadoop/mapred/Mapper.html
api/org/apache/hadoop/mapred/JobConfigurable.html#configure(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/Mapper.html#map(K1, V1, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/io/Closeable.html#close()

Hadoop Map/Reduce Tutorial

to zero or many output pairs. Output pairs are collected with calls to
OutputCollector.collect(WritableComparable,Writable).

Applications can use the Repor t er to report progress, set application-level status messages
and update Count er s, or just indicate that they are alive.

All intermediate val ues associated with a given output key are subsequently grouped by the
framework, and passed to the Reducer (s) to determine the final output. Users can control
the grouping by specifying a Conpar at or via

JobConf.setOutputK eyComparator Class(Cl ass).

The Mapper outputs are sorted and then partitioned per Reducer . The total number of
partitions is the same as the number of reduce tasks for the job. Users can control which keys
(and hence records) go to which Reducer by implementing acustomParti ti oner.

Users can optionally specify aconbi ner , via JobConf.setCombinerClass(Class), to
perform local aggregation of the intermediate outputs, which helps to cut down the amount of
data transferred from the Mapper to the Reducer .

The intermediate, sorted outputs are always stored in asimple (key-len, key, value-len,
value) format. Applications can control if, and how, the intermediate outputs are to be
compressed and the CompressionCodec to be used viathe JobConf .

6.1.1.1. How Many M aps?

The number of mapsis usually driven by the total size of the inputs, that is, the total number
of blocks of the input files.

Theright level of parallelism for maps seems to be around 10-100 maps per-node, although it
has been set up to 300 maps for very cpu-light map tasks. Task setup takes awhile, soitis
best if the maps take at |east a minute to execute.

Thus, if you expect 10TB of input data and have a blocksize of 128MB, you'll end up with
82,000 maps, unless setNumMapTasks(int) (which only provides a hint to the framework) is
used to set it even higher.

6.1.2. Reducer
Reducer reduces a set of intermediate values which share akey to a smaller set of values.
The number of reduces for the job is set by the user via JobConf.setNumReduceTasks(int).

Overall, Reducer implementations are passed the JobConf for the job viathe
JobConfigurable.configure(JobConf) method and can override it to initialize themselves. The

Page 10

api/org/apache/hadoop/mapred/OutputCollector.html#collect(K, V)
api/org/apache/hadoop/mapred/JobConf.html#setOutputKeyComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapred/JobConf.html#setCombinerClass(java.lang.Class)
api/org/apache/hadoop/io/compress/CompressionCodec.html
api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)
api/org/apache/hadoop/mapred/Reducer.html
api/org/apache/hadoop/mapred/JobConf.html#setNumReduceTasks(int)
api/org/apache/hadoop/mapred/JobConfigurable.html#configure(org.apache.hadoop.mapred.JobConf)

Hadoop Map/Reduce Tutorial

framework then calls reduce(WritableComparable, Iterator, OutputCollector, Reporter)
method for each <key, (list of val ues) > pairinthegrouped inputs. Applications
can then override the Closeable.close() method to perform any required cleanup.

Reducer has 3 primary phases. shuffle, sort and reduce.

6.1.2.1. Shuffle

Input to the Reducer isthe sorted output of the mappers. In this phase the framework
fetches the relevant partition of the output of all the mappers, viaHTTP.

6.1.2.2. Sort

The framework groups Reducer inputs by keys (since different mappers may have output
the same key) in this stage.

The shuffle and sort phases occur simultaneously; while map-outputs are being fetched they
are merged.

Secondary Sort

If equivalence rules for grouping the intermediate keys are required to be different from those
for grouping keys before reduction, then one may specify a Conpar at or via
JobConf.setOutputV al ueGroupingComparator(Class). Since

JobConf.setOutputK eyComparatorClass(Class) can be used to control how intermediate keys
are grouped, these can be used in conjunction to simulate secondary sort on values.

6.1.2.3. Reduce

In this phase the reduce(WritableComparable, Iterator, OutputCollector, Reporter) method is
called for each <key, (Ilist of val ues) > pairinthe grouped inputs.

The output of the reduce task is typically written to the FileSystem via
OutputCollector.collect(WritableComparable, Writable).

Applications can use the Repor t er to report progress, set application-level status messages
and update Count er s, or just indicate that they are alive.

The output of the Reducer isnot sorted.

6.1.2.4. How Many Reduces?

The right number of reduces seemsto be 0. 95 or 1. 75 multiplied by (<no. of nodes> *
mapr ed. t askt racker. reduce. t asks. maxi mum.

Page 11

api/org/apache/hadoop/mapred/Reducer.html#reduce(K2, java.util.Iterator, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/io/Closeable.html#close()
api/org/apache/hadoop/mapred/JobConf.html#setOutputValueGroupingComparator(java.lang.Class)
api/org/apache/hadoop/mapred/JobConf.html#setOutputKeyComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapred/Reducer.html#reduce(K2, java.util.Iterator, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/fs/FileSystem.html
api/org/apache/hadoop/mapred/OutputCollector.html#collect(K, V)

Hadoop Map/Reduce Tutorial

With 0. 95 all of the reduces can launch immediately and start transfering map outputs as
the maps finish. With 1. 75 the faster nodes will finish their first round of reduces and
launch a second wave of reduces doing a much better job of load balancing.

Increasing the number of reduces increases the framework overhead, but increases |oad
balancing and lowers the cost of failures.

The scaling factors above are dightly less than whole numbers to reserve afew reduce slots
in the framework for specul ative-tasks and failed tasks.

6.1.2.5. Reducer NONE

It islegal to set the number of reduce-tasksto zero if no reduction is desired.

In this case the outputs of the map-tasks go directly to the Fi | eSyst em into the output
path set by setOutputPath(Path). The framework does not sort the map-outputs before writing
themout totheFi | eSyst em

6.1.3. Partitioner
Partitioner partitions the key space.

Partitioner controls the partitioning of the keys of the intermediate map-outputs. The key (or
asubset of the key) is used to derive the partition, typically by a hash function. The total
number of partitions is the same as the number of reduce tasks for the job. Hence this
controls which of the mreduce tasks the intermediate key (and hence the record) is sent to for
reduction.

HashPartitioner isthe default Parti ti oner.

6.1.4. Reporter

Reporter is afacility for Map/Reduce applications to report progress, set application-level
status messages and update Count er s.

Mapper and Reducer implementations can use the Repor t er to report progress or just
indicate that they are alive. In scenarios where the application takes a significant amount of
time to process individual key/value pairs, thisis crucial since the framework might assume
that the task has timed-out and kill that task. Another way to avoid thisisto set the
configuration parameter mapr ed. t ask. t i meout to ahigh-enough value (or even set it to
zero for no time-outs).

Applications can also update Count er s using the Reporter.

Page 12

api/org/apache/hadoop/mapred/FileOutputFormat.html#setOutputPath(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/Partitioner.html
api/org/apache/hadoop/mapred/lib/HashPartitioner.html
api/org/apache/hadoop/mapred/Reporter.html

Hadoop Map/Reduce Tutorial

6.1.5. OutputCollector

OutputCollector is ageneralization of the facility provided by the Map/Reduce framework to
collect data output by the Mapper or the Reducer (either the intermediate outputs or the
output of the job).

Hadoop Map/Reduce comes bundled with alibrary of generally useful mappers, reducers,
and partitioners.

6.2. Job Configuration
JobConf represents a Map/Reduce job configuration.

JobConf isthe primary interface for auser to describe a Map/Reduce job to the Hadoop
framework for execution. The framework triesto faithfully execute the job as described by
JobConf , however:

« f Some configuration parameters may have been marked as final by administrators and
hence cannot be altered.

« While some job parameters are straight-forward to set (e.g. setNumReduceTasks(int)),
other parameters interact subtly with the rest of the framework and/or job configuration
and are more complex to set (e.g. setNumMapTasks(int)).

JobConf istypicaly used to specify the Mapper , combiner (if any), Parti ti oner,
Reducer, | nput For mat , Qut put For mat and Qut put Conmi t t er implementations.
JobConf asoindicates the set of input files (setl nputPaths(JobConf, Path...)

/addI nputPath(JobConf, Path)) and (setl nputPaths(JobConf, String) /addinputPaths(JobConf,
String)) and where the output files should be written (setOutputPath(Path)).

Optionally, JobConf isused to specify other advanced facets of the job such as the
Conpar at or to be used, filesto beputintheDi st ri but edCache, whether
intermediate and/or job outputs are to be compressed (and how), debugging via
user-provided scripts (setM apDebugScri pt(String)/setReduceDebugScript(String)) , whether
job tasks can be executed in a specul ative manner

(setM apSpecul ativeExecution(bool ean))/(setReduceSpecul ativeExecution(bool ean)) ,
maximum number of attempts per task

(setM axM apAttempts(int)/setM axReduceAttempts(int)) , percentage of tasks failure which
can betolerated by the job

(setM axM apT askFail uresPercent(int)/setM axReduceT askFail uresPercent(int)) etc.

Of course, users can use set(String, String)/get(String, String) to set/get arbitrary parameters
needed by applications. However, usethe Di st ri but edCache for large amounts of

Page 13

api/org/apache/hadoop/mapred/OutputCollector.html
api/org/apache/hadoop/mapred/lib/package-summary.html
api/org/apache/hadoop/mapred/JobConf.html
api/org/apache/hadoop/conf/Configuration.html#FinalParams
api/org/apache/hadoop/mapred/JobConf.html#setNumReduceTasks(int)
api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)
api/org/apache/hadoop/mapred/FileInputFormat.html#setInputPaths(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path[])
api/org/apache/hadoop/mapred/FileInputFormat.html#addInputPath(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/FileInputFormat.html#setInputPaths(org.apache.hadoop.mapred.JobConf,%20java.lang.String)
api/org/apache/hadoop/mapred/FileInputFormat.html#addInputPath(org.apache.hadoop.mapred.JobConf,%20java.lang.String)
api/org/apache/hadoop/mapred/FileInputFormat.html#addInputPath(org.apache.hadoop.mapred.JobConf,%20java.lang.String)
api/org/apache/hadoop/mapred/FileOutputFormat.html#setOutputPath(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/JobConf.html#setMapDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setReduceDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setMapSpeculativeExecution(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setReduceSpeculativeExecution(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setMaxMapAttempts(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceAttempts(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxMapTaskFailuresPercent(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceTaskFailuresPercent(int)
api/org/apache/hadoop/conf/Configuration.html#set(java.lang.String, java.lang.String)
api/org/apache/hadoop/conf/Configuration.html#get(java.lang.String, java.lang.String)

Hadoop Map/Reduce Tutorial

(read-only) data.

6.3. Task Execution & Environment

The TaskTr acker executesthe Mapper/ Reducer task asachild processin a separate
jvm.

The child-task inherits the environment of the parent TaskTr acker . The user can specify
additional options to the child-jvm viathe mapr ed. chi | d. j ava. opt s configuration
parameter in the JobConf such as non-standard paths for the run-time linker to search
shared librariesvia- Dj ava. | i brary. pat h=<> etc. If the

mapr ed. chi | d. j ava. opt s contains the symbol @taskid@ it is interpolated with value
of t aski d of the map/reduce task.

Here is an example with multiple arguments and substitutions, showing jvm GC logging, and
start of a passwordless VM JMX agent so that it can connect with jconsole and the likes to
watch child memory, threads and get thread dumps. It also sets the maximum heap-size of
the child jvm to 512MB and adds an additional pathto thej ava. | i brary. pat h of the
child-jvm.

<property>
<name>mapr ed. chi | d. j ava. opt s</ nane>
<val ue>
- Xmx512M - Dj ava. | i brary. pat h=/ hone/ nyconpany/lib
-verbose: gc - Xl oggc: /tnp/ @aski d@ gc
- Dcom sun. managenent . j nxr enot e. aut hent i cat e=f al se
- Dcom sun. managenent . j nxr enot e. ssl =f al se
</val ue>
</ property>

6.3.1. Memory management

Users/admins can aso specify the maximum virtual memory of the launched child-task, and
any sub-process it launches recursively, using mapr ed. chi | d. ul i m t. Notethat the
value set hereis a per process limit. The value for mapr ed. chi | d. ul i m t should be
specified in kilo bytes (KB). And also the value must be greater than or equal to the -Xmx
passed to JavavV M, else the VM might not start.

Note: mapr ed. chi | d. j ava. opt s are used only for configuring the launched child tasks
from task tracker. Configuring the memory options for daemons is documented in
cluster_setup.html

The memory available to some parts of the framework is aso configurable. In map and

Page 14

cluster_setup.html#Configuring+the+Environment+of+the+Hadoop+Daemons

Hadoop Map/Reduce Tutorial

reduce tasks, performance may be influenced by adjusting parameters influencing the
concurrency of operations and the frequency with which datawill hit disk. Monitoring the
filesystem counters for ajob- particularly relative to byte counts from the map and into the
reduce- isinvaluable to the tuning of these parameters.

6.3.2. Map Parameters

A record emitted from amap will be serialized into a buffer and metadata will be stored into
accounting buffers. As described in the following options, when either the serialization buffer
or the metadata exceed a threshold, the contents of the buffers will be sorted and written to
disk in the background while the map continues to output records. If either buffer fills
completely while the spill isin progress, the map thread will block. When themap is
finished, any remaining records are written to disk and all on-disk segments are merged into
asinglefile. Minimizing the number of spillsto disk can decrease map time, but alarger
buffer also decreases the memory available to the mapper.

io.sort.mb int The cumulative size of the
serialization and accounting
buffers storing records emitted
from the map, in megabytes.

io.sort.record.percent float The ratio of serialization to
accounting space can be
adjusted. Each serialized
record requires 16 bytes of
accounting information in
addition to its serialized size to
effect the sort. This percentage
of space allocated from
i 0. sort. nb affects the
probability of a spill to disk
being caused by either
exhaustion of the serialization
buffer or the accounting space.
Clearly, for a map outputting
small records, a higher value
than the default will likely
decrease the number of spills
to disk.

io.sort.spill.percent float This is the threshold for the
accounting and serialization
buffers. When this percentage
of either buffer has filled, their

Page 15

Hadoop Map/Reduce Tutorial

contents will be spilled to disk
in the background. Let

i 0.sort.record. percent
ber,io.sort.nbbex, and
this value be g. The maximum
number of records collected
before the collection thread will
spillisr * x * q * 2"16.
Note that a higher value may
decrease the number of- or
even eliminate- merges, but will
also increase the probability of
the map task getting blocked.
The lowest average map times
are usually obtained by
accurately estimating the size
of the map output and
preventing multiple spills.

Other notes

« |f either spill threshold is exceeded while a spill isin progress, collection will continue
until the spill isfinished. For example, if i 0. sort. buffer. spill. percent isset
to 0.33, and the remainder of the buffer isfilled while the spill runs, the next spill will
include al the collected records, or 0.66 of the buffer, and will not generate additional
spills. In other words, the thresholds are defining triggers, not blocking.

« A record larger than the serialization buffer will first trigger a spill, then be spilled to a
separate file. It is undefined whether or not this record will first pass through the
combiner.

6.3.3. Shuffle/lReduce Par ameters

As described previously, each reduce fetches the output assigned to it by the Partitioner via
HTTP into memory and periodically merges these outputs to disk. If intermediate
compression of map outputsis turned on, each output is decompressed into memory. The
following options affect the frequency of these merges to disk prior to the reduce and the
memory allocated to map output during the reduce.

io.sort.factor int Specifies the number of
segments on disk to be merged
at the same time. It limits the
number of open files and
compression codecs during the
merge. If the number of files

Page 16

Hadoop Map/Reduce Tutorial

mapred.inmem.merge.threshold | int

mapred.job.shuffle.merge.percer float

mapred.job.shuffle.input.buffer.p¢ float

exceeds this limit, the merge
will proceed in several passes.
Though this limit also applies to
the map, most jobs should be
configured so that hitting this
limit is unlikely there.

The number of sorted map
outputs fetched into memory
before being merged to disk.
Like the spill thresholds in the
preceding note, this is not
defining a unit of partition, but a
trigger. In practice, this is
usually set very high (1000) or
disabled (0), since merging
in-memory segments is often
less expensive than merging
from disk (see notes following
this table). This threshold
influences only the frequency of
in-memory merges during the
shuffle.

The memory threshold for
fetched map outputs before an
in-memory merge is started,
expressed as a percentage of
memory allocated to storing
map outputs in memory. Since
map outputs that can't fit in
memory can be stalled, setting
this high may decrease
parallelism between the fetch
and merge. Conversely, values
as high as 1.0 have been
effective for reduces whose
input can fit entirely in memory.
This parameter influences only
the frequency of in-memory
merges during the shuffle.

The percentage of memory-
relative to the maximum
heapsize as typically specified
in

mapr ed. chi |l d. j ava. opt s-
that can be allocated to storing

Page 17

mapred.job.reduce.input.buffer.p float

Other notes

Hadoop Map/Reduce Tutorial

map outputs during the shuffle.
Though some memory should
be set aside for the framework,
in general it is advantageous to
set this high enough to store
large and numerous map
outputs.

The percentage of memory
relative to the maximum
heapsize in which map outputs
may be retained during the
reduce. When the reduce
begins, map outputs will be
merged to disk until those that
remain are under the resource
limit this defines. By default, all
map outputs are merged to disk
before the reduce begins to
maximize the memory available
to the reduce. For less
memory-intensive reduces, this
should be increased to avoid
trips to disk.

« |f amap output islarger than 25 percent of the memory allocated to copying map outputs,
it will be written directly to disk without first staging through memory.

« When running with a combiner, the reasoning about high merge thresholds and large
buffers may not hold. For merges started before all map outputs have been fetched, the
combiner is run while spilling to disk. In some cases, one can obtain better reduce times
by spending resources combining map outputs- making disk spills small and parall€elizing
spilling and fetching- rather than aggressively increasing buffer sizes.

« When merging in-memory map outputs to disk to begin the reduce, if an intermediate
merge is necessary because there are segmentsto spill and at least i 0. sort . f act or
segments already on disk, the in-memory map outputs will be part of the intermediate

merge.

6.3.4. Directory Structure

The task tracker has local directory, ${ mapred. | ocal . dir}/taskTracker/ to create
localized cache and localized job. It can define multiple local directories (spanning multiple
disks) and then each filename is assigned to a semi-random local directory. When the job
starts, task tracker creates alocalized job directory relative to the local directory specified in

Page 18

Hadoop Map/Reduce Tutorial

the configuration. Thus the task tracker directory structure looks the following:

« ${mapred.|ocal.dir}/taskTracker/archive/ : Thedistributed cache. This
directory holds the localized distributed cache. Thus localized distributed cache is shared
among all the tasks and jobs

« ${mapred.local.dir}/taskTracker/jobcache/ $j obi d/ : Thelocalized
job directory

${mapred. | ocal .dir}/taskTracker/jobcache/ $j obi d/ work/ : The

job-specific shared directory. The tasks can use this space as scratch space and share

files among them. This directory is exposed to the users through the configuration
property j ob. | ocal . di r. Thedirectory can accessed through api

JobConf.getJobL ocalDir(). It is available as System property also. So, users

(streaming etc.) can call Syst em get Property("job.local .dir") to

access the directory.

${mapred. | ocal .dir}/taskTracker/jobcache/ $jobid/jars/ : The

jarsdirectory, which hasthe job jar file and expanded jar. Thej ob. j ar isthe

application'sjar file that is automatically distributed to each machine. It is expanded
in jars directory before the tasks for the job start. The job.jar location is accessible to
the application through the api JobConf.getJar() . To access the unjarred directory,

JobConf.getJar().getParent() can be called.

${mapred. | ocal .dir}/taskTracker/jobcache/ $j obi d/job. xn :

The job.xml file, the generic job configuration, localized for the job.

${mapred. | ocal .dir}/taskTracker/jobcache/ $j obi d/ $t aski d:

The task direcrory for each task attempt. Each task directory again has the following

structure :

${mapred. | ocal .dir}/taskTracker/jobcache/ $j obi d/ $t aski d/j ob. xm
. A job.xml file, task localized job configuration, Task localization means that

properties have been set that are specific to this particular task within the job. The

properties localized for each task are described below.

${mapred. |l ocal .dir}/taskTracker/jobcache/ $j obi d/ $t aski d/ out put
. A directory for intermediate output files. This contains the temporary map

reduce data generated by the framework such as map output files etc.

${mapred. | ocal .dir}/taskTracker/jobcache/ $j obi d/ $t aski d/ wor k

: The curernt working directory of the task. With jvm reuse enabled for tasks, this

directory will be the directory on which the jvm has started

${mapred. |l ocal .dir}/taskTracker/jobcache/ $j obi d/ $t aski d/ wor k/ t np
: The temporary directory for the task. (User can specify the property

mapr ed. chi | d. t np to set the value of temporary directory for map and

reduce tasks. Thisdefaultsto . / t np. If the value is not an absolute path, it is

prepended with task's working directory. Otherwise, it isdirectly assigned. The

directory will be created if it doesn't exist. Then, the child javatasks are executed

Page 19

api/org/apache/hadoop/mapred/JobConf.html#getJobLocalDir()
api/org/apache/hadoop/mapred/JobConf.html#getJar()

Hadoop Map/Reduce Tutorial

withoption- Oj ava. i o. t npdi r="t he absolute path of the tnp
di r' . Anp pipes and streaming are set with environment variable,

TMPDI R="'t he absolute path of the tnp dir'). Thisdirectoryis
created, if mapr ed. chi | d. t np hasthevaue. /t np

6.3.5. Task JVM Reuse

Jobs can enable task VMs to be reused by specifying the job configuration

mapr ed. j ob. reuse. j vm num t asks. If thevalueis 1 (the default), then IVMs are
not reused (i.e. 1 task per VM). If itis-1, thereis no limit to the number of tasksa JVM can
run (of the same job). One can also specify some value greater than 1 using the api

JobConf.setNumT asksT oExecutePerJvm(int)

The following properties are localized in the job configuration for each task's execution:

mapred.job.id String
mapred.jar String
job.local.dir String
mapred.tip.id String
mapred.task.id String
mapred.task.is.map boolean
mapred.task.partition int
map.input.file String
map.input.start long
map.input.length long
mapred.work.output.dir String

The job id
job.jar location in job directory

The job specific shared scratch
space

The task id

The task attempt id

Is this a map task

The id of the task within the job

The filename that the map is
reading from

The offset of the start of the
map input split

The number of bytes in the
map input split

The task's temporary output
directory

The standard output (stdout) and error (stderr) streams of the task are read by the
TaskTracker and logged to ${ HADOOP_LOG DI R}/ user | ogs

Page 20

api/org/apache/hadoop/mapred/JobConf.html#setNumTasksToExecutePerJvm(int)

Hadoop Map/Reduce Tutorial

The DistributedCache can also be used to distribute both jars and native libraries for usein
the map and/or reduce tasks. The child-jvm aways has its current working directory added to
thej ava. l i brary. pat hand LD LI BRARY_PATH. And hence the cached libraries can
be loaded via System.loadL ibrary or System.load. More details on how to load shared
libraries through distributed cache are documented at native_libraries.html

6.4. Job Submission and Monitoring
JobClient isthe primary interface by which user-job interacts with the JobTr acker .

Jobd i ent providesfacilities to submit jobs, track their progress, access component-tasks
reports and logs, get the Map/Reduce cluster's status information and so on.

The job submission process involves:

1. Checking the input and output specifications of the job.

2. Computing the | nput Spl i t valuesfor thejob.

3. Setting up the requisite accounting information for the Di st ri but edCache of the job,
if necessary.

4. Copyingthejob'sjar and configuration to the Map/Reduce system directory on the
Fi | eSystem

5. Submitting the job to the JobTr acker and optionally monitoring it's status.

Job hlstory filesare also logged to user specmed directory

hadoop. j ob. hi story. user. | ocati on which defaultsto job output directory. The
filesarestored in"_logs/history/" in the specified directory. Hence, by default they will bein
mapred.output.dir/_logs/history. User can stop logging by giving the value none for
hadoop. j ob. hi story. user. | ocation

User can view the history logs summary in specified directory using the following command
$ bin/hadoop job -history output-dir

This command will print job details, failed and killed tip details.

More details about the job such as successful tasks and task attempts made for each task can
be viewed using the following command

$ bin/hadoop job -history all output-dir

User can use Outputl ogFilter to filter log files from the output directory listing.

Normally the user creates the application, describes various facets of the job viaJobConf ,
and then usesthe Jobd i ent to submit the job and monitor its progress.

6.4.1. Job Control
Users may need to chain Map/Reduce jobs to accomplish complex tasks which cannot be

Page 21

http://java.sun.com/javase/6/docs/api/java/lang/System.html#loadLibrary(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/lang/System.html#load(java.lang.String)
native_libraries.html#Loading+native+libraries+through+DistributedCache
api/org/apache/hadoop/mapred/JobClient.html
api/org/apache/hadoop/mapred/OutputLogFilter.html

Hadoop Map/Reduce Tutorial

done viaasingle Map/Reduce job. Thisisfairly easy since the output of the job typically
goes to distributed file-system, and the output, in turn, can be used as the input for the next
job.

However, this also means that the onus on ensuring jobs are complete (success/failure) lies
squarely on the clients. In such cases, the various job-control options are:

» runJob(JobConf) : Submits the job and returns only after the job has completed.

« submitJob(JobConf) : Only submits the job, then poll the returned handle to the
RunningJob to query status and make scheduling decisions.

» JobConf.setJobEndNotificationURI(String) : Sets up a notification upon job-completion,
thus avoiding polling.

6.5. Job Input
InputFormat describes the input-specification for a Map/Reduce job.

The Map/Reduce framework relies on the | nput For mat of the job to:

1. Validate the input-specification of the job.

2. Split-up theinput file(s) into logical | nput Spl i t instances, each of which isthen
assigned to an individual Mapper .

3. Providethe Recor dReader implementation used to glean input records from the
logical | nput Spl i t for processing by the Mapper .

The default behavior of file-based | nput For mat implementations, typically sub-classes of
FilelnputFormat, isto split the input into logical | nput Spl i t instances based on the total
size, in bytes, of the input files. However, the Fi | eSyst emblocksize of the input filesis
treated as an upper bound for input splits. A lower bound on the split size can be set via
mapred. m n.split.size.

Clearly, logical splits based on input-size isinsufficient for many applications since record
boundaries must be respected. In such cases, the application should implement a

Recor dReader , who is responsible for respecting record-boundaries and presents a
record-oriented view of thelogical | nput Spl it totheindividual task.

TextlnputFormat is the default | nput For mat .

If Text | nput For mat isthel nput For nmat for agiven job, the framework detects
input-files with the .gz and .I1zo extensions and automatically decompresses them using the
appropriate Conpr essi onCodec. However, it must be noted that compressed files with
the above extensions cannot be split and each compressed file is processed in its entirety by a
single mapper.

Page 22

api/org/apache/hadoop/mapred/JobClient.html#runJob(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/JobClient.html#submitJob(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/RunningJob.html
api/org/apache/hadoop/mapred/JobConf.html#setJobEndNotificationURI(java.lang.String)
api/org/apache/hadoop/mapred/InputFormat.html
api/org/apache/hadoop/mapred/FileInputFormat.html
api/org/apache/hadoop/mapred/TextInputFormat.html

Hadoop Map/Reduce Tutorial

6.5.1. InputSplit
InputSplit represents the data to be processed by an individual Mapper .

Typicaly | nput Spl i t presents abyte-oriented view of the input, and it isthe
responsibility of Recor dReader to process and present a record-oriented view.

FileSplit isthedefault | nput Split.Itsetsmap. i nput. fil e tothe path of the input
filefor thelogical split.

6.5.2. RecordReader

RecordReader reads <key, val ue> pairsfroman| nput Split.

Typicaly the Recor dReader converts the byte-oriented view of the input, provided by the
| nput Spl i t, and presents arecord-oriented to the Mapper implementations for
processing. Recor dReader thus assumes the responsibility of processing record
boundaries and presents the tasks with keys and values.

6.6. Job Output

OutputFormat describes the output-specification for a Map/Reduce job.

The Map/Reduce framework relies on the Qut put For mat of the job to:

1. Validate the output-specification of the job; for example, check that the output directory
doesn't already exist.

2. ProvidetheRecor dW i t er implementation used to write the output files of the job.
Output filesare stored inaFi | eSyst em

Text Qut put For mat isthe default Qut put For mat .

6.6.1. OutputCommitter
OutputCommitter describes the commit of task output for a Map/Reduce job.

The Map/Reduce framework relies on the Qut put Commi t t er of thejob to:

1. Setup thejob during initialization. For example, create the temporary output directory for
the job during the initialization of the job.

2. Cleanup thejob after the job completion. For example, remove the temporary output
directory after the job completion.

3. Setup the task temporary output.

4. Check whether atask needs a commit. Thisisto avoid the commit procedure if atask

Page 23

api/org/apache/hadoop/mapred/InputSplit.html
api/org/apache/hadoop/mapred/FileSplit.html
api/org/apache/hadoop/mapred/RecordReader.html
api/org/apache/hadoop/mapred/OutputFormat.html
api/org/apache/hadoop/mapred/OutputCommitter.html

Hadoop Map/Reduce Tutorial

does not need commit.
5. Commit of the task output.
6. Discard the task commit.

Fi | eQut put Conm tt er isthedefault Qut put Conm tter.

6.6.2. Task Side-Effect Files

In some applications, component tasks need to create and/or write to side-files, which differ
from the actual job-output files.

In such cases there could be issues with two instances of the same Mapper or Reducer
running simultaneously (for example, speculative tasks) trying to open and/or write to the
same file (path) on the Fi | eSyst em Hence the application-writer will have to pick unique
names per task-attempt (using the attemptid, say

attenpt 200709221812 0001_m 000000_0), not just per task.

To avoid these issues the Map/Reduce framework, when the Qut put Conmi tt er is

Fi | eQut put Commi t t er , maintains a specia

${mapred. output.dir}/ _tenporary/_${taski d} sub-directory accessiblevia
${ mapr ed. wor k. out put . di r} for each task-attempt onthe Fi | eSyst emwhere the
output of the task-attempt is stored. On successful completion of the task-attempt, the filesin
the ${ mapr ed. out put. dir}/ _tenporary/ _${taski d} (only) are promoted to
${ mapr ed. out put . di r} . Of course, the framework discards the sub-directory of
unsuccessful task-attempts. This processis completely transparent to the application.

The application-writer can take advantage of this feature by creating any side-files required
in${ mapr ed. wor k. out put . di r} during execution of atask via
FileOutputFormat.getWorkOutputPath(), and the framework will promote them similarly for
succesful task-attempts, thus eliminating the need to pick unique paths per task-attempt.

Note: Thevalue of ${ mapr ed. wor k. out put . di r} during execution of a particular
task-attempt is actually ${ mapr ed. out put . dir}/ _tenporary/ {$taski d},and
thisvalueis set by the Map/Reduce framework. So, just create any side-filesin the path
returned by FileOutputFormat.get\WorkOutputPath() from map/reduce task to take advantage
of thisfeature.

The entire discussion holds true for maps of jobs with reducer=NONE (i.e. O reduces) since
output of the map, in that case, goes directly to HDFS.

6.6.3. RecordWriter

RecordWriter writes the output <key, val ue> pairsto an output file.

Page 24

api/org/apache/hadoop/mapred/FileOutputFormat.html#getWorkOutputPath(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/FileOutputFormat.html#getWorkOutputPath(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/RecordWriter.html

Hadoop Map/Reduce Tutorial

RecordWriter implementations write the job outputsto the Fi | eSyst em
6.7. Other Useful Features

6.7.1. Submitting Jobsto a Queue

Some job schedulers supported in Hadoop, like the Capacity Scheduler, support multiple
gueues. If such a scheduler is being used, users can submit jobs to one of the queues
administrators would have defined in the mapred.queue.names property of the Hadoop site
configuration. The queue name can be specified through the mapred.job.queue.name
property, or through the setQueueName(String) API. Note that administrators may choose to
define ACLs that control which queues ajob can be submitted to by a given user. In that
casg, if thejob is not submitted to one of the queues where the user has access, the job would
be rejected.

6.7.2. Counters

Count er s represent global counters, defined either by the Map/Reduce framework or
applications. Each Count er can be of any Enumtype. Counters of a particular Enumare
bunched into groups of type Count er s. Gr oup.

Applications can define arbitrary Count er s (of type Enun) and update them via
Reporter.incrCounter(Enum, long) or Reporter.incrCounter(String, String. long) in the map
and/or r educe methods. These counters are then globally aggregated by the framework.

6.7.3. DistributedCache
DistributedCache distributes application-specific, large, read-only files efficiently.

Di stri but edCache isafacility provided by the Map/Reduce framework to cache files
(text, archives, jars and so on) needed by applications.

Applications specify the files to be cached via urls (hdfs://) in the JobConf . The
Di st ri but edCache assumesthat the files specified via hdfs:// urls are already present on
theFi | eSyst em

The framework will copy the necessary files to the slave node before any tasks for the job are
executed on that node. Its efficiency stems from the fact that the files are only copied once
per job and the ability to cache archives which are un-archived on the slaves.

Di st ri but edCache tracks the modification timestamps of the cached files. Clearly the
cache files should not be modified by the application or externally while the job is executing.

Page 25

capacity_scheduler.html
api/org/apache/hadoop/mapred/JobConf.html#setQueueName(java.lang.String)
api/org/apache/hadoop/mapred/Reporter.html#incrCounter(java.lang.Enum, long)
api/org/apache/hadoop/mapred/Reporter.html#incrCounter(java.lang.String, java.lang.String, long amount)
api/org/apache/hadoop/filecache/DistributedCache.html

Hadoop Map/Reduce Tutorial

Di stri but edCache can be used to distribute simple, read-only data/text files and more
complex types such as archives and jars. Archives (zip, tar, tgz and tar.gz files) are
un-archived at the slave nodes. Files have execution permissions set.

The files/archives can be distributed by setting the property

mapr ed. cache. {fi | es| ar chi ves}. If morethan one file/archive hasto be
distributed, they can be added as comma separated paths. The properties can also be set by
APIs DistributedCache.addCacheFile(URI,conf)/
DistributedCache.addCacheArchive(URI,conf) and

DistributedCache.setCacheFiles(URI s,conf)/ DistributedCache.setCacheArchives(URIs,conf)
where URI isof theform hdf s: / / host : port/ absol ut e- pat h#l i nk- nane. In
Streaming, the files can be distributed through command line option

-cacheFi | e/ - cacheAr chi ve.

Optionally users can also direct the Di st ri but edCache to symlink the cached file(s) into
thecurrent working directory of thetask viathe
DistributedCache.createSymlink(Configuration) api. Or by setting the configuration property
mapr ed. creat e. sym i nk asyes. The DistributedCache will usethef r agnment of
the URI as the name of the symlink. For example, the URI

hdf s: // nanenode: port/1ib. so. 1#l i b. so will have the symlink name as

i b.sointask'scwd for thefilel i b. so. 1 indistributed cache.

TheDi stri but edCache can also be used as a rudimentary software distribution
mechanism for use in the map and/or reduce tasks. It can be used to distribute both jars and
native libraries. The DistributedCache.addArchiveT oClassPath(Path, Configuration) or
DistributedCache.addFileT oClassPath(Path, Configuration) api can be used to cache filedjars
and also add them to the classpath of child-jvm. The same can be done by setting the
configuration propertiesmapr ed. j ob. cl asspat h. {fi |l es| archi ves}. Similarly
the cached files that are symlinked into the working directory of the task can be used to
distribute native libraries and load them.

6.7.4. Tool
The Toal interface supports the handling of generic Hadoop command-line options.

Tool isthe standard for any Map/Reduce tool or application. The application should
delegate the handling of standard command-line options to GenericOptionsParser via
ToolRunner.run(Tool, String[]) and only handle its custom arguments.

The generic Hadoop command-line options are:
-conf <configuration file>
- D <property=val ue>

Page 26

api/org/apache/hadoop/filecache/DistributedCache.html#addCacheFile(java.net.URI,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addCacheArchive(java.net.URI,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#setCacheFiles(java.net.URI[],%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#setCacheArchives(java.net.URI[],%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#createSymlink(org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addArchiveToClassPath(org.apache.hadoop.fs.Path,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addFileToClassPath(org.apache.hadoop.fs.Path,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/util/Tool.html
api/org/apache/hadoop/util/GenericOptionsParser.html
api/org/apache/hadoop/util/ToolRunner.html#run(org.apache.hadoop.util.Tool, java.lang.String[])

Hadoop Map/Reduce Tutorial

-fs <l ocal | nanenode: port >
-jt <l ocal|jobtracker:port>

6.7.5. | solationRunner

| solationRunner is a utility to help debug M ap/Reduce programs.

Tousethel sol ati onRunner , first set keep. fai | ed. tasks.filestotrue (aso
seekeep. tasks. fil es. pattern).

Next, go to the node on which the failed task ran and go to the Task Tr acker 'slocal
directory and runthel sol ati onRunner :

$ cd <local path>/taskTracker/ ${taski d}/work

$ bi n/ hadoop org. apache. hadoop. mapr ed. | sol ati onRunner
../job.xm

| sol ati onRunner will run the failed task in asingle jvm, which can be in the debugger,
over precisely the same input.

6.7.6. Profiling

Profiling isa utility to get a representative (2 or 3) sample of built-in java profiler for a
sample of maps and reduces.

User can specify whether the system should collect profiler information for some of the tasks
in the job by setting the configuration property mapr ed. t ask. prof i | e. Thevalue can
be set using the api JobConf.setProfileEnabled(boolean). If the valueisset t r ue, the task
profiling is enabled. The profiler information is stored in the the user log directory. By
default, profiling is not enabled for the job.

Once user configures that profiling is needed, she/he can use the configuration property
mapr ed. t ask. profil e. {maps| reduces} to set the ranges of map/reduce tasks to
profile. The value can be set using the api JobConf.setProfileT askRange(boolean,String). By
default, the specified rangeis O0- 2.

User can also specify the profiler configuration arguments by setting the configuration

property mapr ed. t ask. profi | e. par ans. The value can be specified using the api
JobConf.setProfileParams(String). If the string contains a %, it will be replaced with the

name of the profiling output file when the task runs. These parameters are passed to the task

child VM on the command line. The default value for the profiling parametersis

-agent | i b: hprof =cpu=sanpl es, heap=si tes, force=n, t hr ead=y, ver bose=n, fi | e=%

6.7.7. Debugging

Page 27

api/org/apache/hadoop/mapred/IsolationRunner.html
api/org/apache/hadoop/mapred/JobConf.html#setProfileEnabled(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setProfileTaskRange(boolean,%20java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setProfileParams(java.lang.String)

Hadoop Map/Reduce Tutorial

Map/Reduce framework provides afacility to run user-provided scripts for debugging. When
map/reduce task fails, user can run script for doing post-processing on task logsi.etask's
stdout, stderr, syslog and jobconf. The stdout and stderr of the user-provided debug script are
printed on the diagnostics. These outputs are also displayed on job Ul on demand.

In the following sections we discuss how to submit debug script along with the job. For
submitting debug script, first it has to distributed. Then the script has to supplied in
Configuration.

6.7.7.1. How to distribute script file:

The user has to use DistributedCache mechanism to distribute and symlink the debug script
file.

6.7.7.2. How to submit script:

A quick way to submit debug script isto set values for the properties
"mapred.map.task.debug.script” and "mapred.reduce.task.debug.script” for debugging map
task and reduce task respectively. These properties can also be set by using APIs
JobConf.setM apDebugScript(String) and JobConf.setReduceDebugScript(String) . For
streaming, debug script can be submitted with command-line options -mapdebug,
-reducedebug for debugging mapper and reducer respectively.

The arguments of the script are task's stdout, stderr, syslog and jobconf files. The debug
command, run on the node where the map/reduce failed, is:
$script $stdout S$stderr $sysl og $j obconf

Pipes programs have the c++ program name as a fifth argument for the command. Thus for
the pipes programs the command is
$script $stdout $stderr $sysl og $j obconf $program

6.7.7.3. Default Behavior:

For pipes, adefault script isrun to process core dumps under gdb, prints stack trace and gives
info about running threads.

6.7.8. JobControl
JobContral is a utility which encapsulates a set of Map/Reduce jobs and their dependencies.

6.7.9. Data Compression

Page 28

mapred_tutorial.html#DistributedCache
api/org/apache/hadoop/mapred/JobConf.html#setMapDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setReduceDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/jobcontrol/package-summary.html

Hadoop Map/Reduce Tutorial

Hadoop Map/Reduce provides facilities for the application-writer to specify compression for
both intermediate map-outputs and the job-outputsi.e. output of the reduces. It also comes
bundled with CompressionCodec implementations for the zlib and |zo compression
algorithms. The gzip file format is also supported.

Hadoop also provides native implementations of the above compression codecs for reasons
of both performance (zlib) and non-availability of Javalibraries (1zo). More details on their
usage and availability are available here.

6.7.9.1. Intermediate Outputs

Applications can control compression of intermediate map-outputs via the
JobConf.setCompressM apOutput(boolean) api and the Conpr essi onCodec to be used via
the JobConf.setM apOutputCompressorClass(Class) api.

6.7.9.2. Job Outputs

Applications can control compression of job-outputs viathe
FileOutputFormat.setCompressOutput(JobConf, boolean) api and the
Conpr essi onCodec to be used can be specified viathe
FileOutputFormat.setOutputCompressorClass(JobConf, Class) api.

If the job outputs are to be stored in the SequenceFileOutputFormat, the required
SequenceFi | e. Conpr essi onType (i.e. RECORD/ BLOCK - defaults to RECORD) can
be specified via the SequenceFileOutputFormat.setOutputCompressionType(JobConf,
SequenceFile.CompressionType) api.

6.7.10. Skipping Bad Records

Hadoop provides an optional mode of execution in which the bad records are detected and
skipped in further attempts. Applications can control various settings via SkipBadRecords.

This feature can be used when map/reduce tasks crashes deterministically on certain input.
This happens due to bugs in the map/reduce function. The usual course would be to fix these
bugs. But sometimes thisis not possible; perhaps the bug isin third party libraries for which
the source code is not available. Due to this, the task never reaches to completion even with
multiple attempts and compl ete data for that task is lost.

With this feature, only asmall portion of datais lost surrounding the bad record. This may be
acceptable for some user applications; for example applications which are doing statistical
analysison very large data. By default this feature is disabled. For turning it on refer
SkipBadRecords.setM apperM ax SkipRecords(Configuration, long) and

Page 29

api/org/apache/hadoop/io/compress/CompressionCodec.html
http://www.zlib.net/
http://www.oberhumer.com/opensource/lzo/
http://www.gzip.org/
native_libraries.html
api/org/apache/hadoop/mapred/JobConf.html#setCompressMapOutput(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setMapOutputCompressorClass(java.lang.Class)
api/org/apache/hadoop/mapred/FileOutputFormat.html#setCompressOutput(org.apache.hadoop.mapred.JobConf,%20boolean)
api/org/apache/hadoop/mapred/FileOutputFormat.html#setOutputCompressorClass(org.apache.hadoop.mapred.JobConf,%20java.lang.Class)
api/org/apache/hadoop/mapred/SequenceFileOutputFormat.html
api/org/apache/hadoop/mapred/SequenceFileOutputFormat.html#setOutputCompressionType(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.io.SequenceFile.CompressionType)
api/org/apache/hadoop/mapred/SequenceFileOutputFormat.html#setOutputCompressionType(org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.io.SequenceFile.CompressionType)
api/org/apache/hadoop/mapred/SkipBadRecords.html
api/org/apache/hadoop/mapred/SkipBadRecords.html#setMapperMaxSkipRecords(org.apache.hadoop.conf.Configuration, long)

Hadoop Map/Reduce Tutorial

SkipBadRecords.setReducerM ax SkipGroups(Configuration, long).

The skipping mode gets kicked off after certain no of failures see
SkipBadRecords.setAttemptsT oStart Skipping(Configuration, int).

In the skipping mode, the map/reduce task maintains the record range which is getting
processed at all times. For maintaining this range, the framework relies on the processed
record counter. see SkipBadRecords. COUNTER_MAP_PROCESSED RECORDS and
SkipBadRecords. COUNTER REDUCE PROCESSED_GROUPS. Based on this counter,
the framework knows that how many records have been processed successfully by
mapper/reducer. Before giving the input to the map/reduce function, it sends this record
range to the Task tracker. If task crashes, the Task tracker knows which one was the last
reported range. On further attempts that range get skipped.

The number of records skipped for a single bad record depends on how frequent, the
processed counters are incremented by the application. It is recommended to increment the
counter after processing every single record. However in some applications this might be
difficult as they may be batching up their processing. In that case, the framework might skip
more records surrounding the bad record. If users want to reduce the number of records
skipped, then they can specify the acceptable value using

SkipBadRecords.setM apperM axSkipRecords(Configuration, long) and
SkipBadRecords.setReducerM axSkipGroups(Configuration, long). The framework tries to
narrow down the skipped range by employing the binary search kind of agorithm during task
re-executions. The skipped range is divided into two halves and only one half get executed.
Based on the subsequent failure, it figures out which half contains the bad record. This task
re-execution will keep happening till acceptable skipped value is met or all task attempts are
exhausted. To increase the number of task attempts, use JobConf.setM axM apA ttempts(int)
and JobConf.setM axReduceA ttempts(int).

The skipped records are written to the hdfs in the sequence file format, which could be used
for later analysis. The location of skipped records output path can be changed by
SkipBadRecords.setSkipOutputPath(JobConf, Path).

7. Example: WordCount v2.0

Hereis amore complete Wor dCount which uses many of the features provided by the
Map/Reduce framework we discussed so far.

This needs the HDFS to be up and running, especialy for the Di st ri but edCache-related
features. Hence it only works with a pseudo-distributed or fully-distributed Hadoop
installation.

Page 30

api/org/apache/hadoop/mapred/SkipBadRecords.html#setReducerMaxSkipGroups(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setAttemptsToStartSkipping(org.apache.hadoop.conf.Configuration, int)
api/org/apache/hadoop/mapred/SkipBadRecords.html#COUNTER_MAP_PROCESSED_RECORDS
api/org/apache/hadoop/mapred/SkipBadRecords.html#COUNTER_REDUCE_PROCESSED_GROUPS
api/org/apache/hadoop/mapred/SkipBadRecords.html#setMapperMaxSkipRecords(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setReducerMaxSkipGroups(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/JobConf.html#setMaxMapAttempts(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceAttempts(int)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setSkipOutputPath(org.apache.hadoop.mapred.JobConf, org.apache.hadoop.fs.Path)
quickstart.html#SingleNodeSetup
quickstart.html#Fully-Distributed+Operation

Hadoop Map/Reduce Tutorial

7.1. Source Code

Njo o~ 0w DM

©

10.
11.
12.
13.

14.
15.

16.
17.

18.
19.

20.

package org. nyorg;

i mport java.io.*;

i mport java.util.*;

i mport org.apache. hadoop. fs. Pat h;

i mport
or g. apache. hadoop. fil ecache. Di stri but edCache;

i mport org. apache. hadoop. conf. *;
i mport org.apache. hadoop.io. *;
i mport org. apache. hadoop. mapred. *;

i mport org. apache. hadoop. util.*;

public class WrdCount extends
Configured inplenments Tool {

public static class Map extends
MapReduceBase i npl ement s
Mapper <LongW it abl e, Text, Text,
IntWitable> {

static enum Counters {
| NPUT_WORDS }

private final static IntWitable
one = new IntWitable(l);

private Text word = new Text();

Page 31

21.
22.

23.

24,

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.
35.

36.
37.

38.
39.

Hadoop Map/Reduce Tutorial

private bool ean caseSensitive =
true;

private Set<String>
patternsToSki p = new
HashSet <Stri ng>();

private | ong nunRecords = O;

private String inputFile;

public void configure(JobConf
job) {

caseSensitive =
j ob. get Bool ean("wor dcount . case. sensitive"
true);

inputFile =
job.get("map.input.file");

i f
(j ob. get Bool ean("wor dcount . ski p. patterns”
false)) {

Pat h[] patternsFiles = new
Pat h[0] ;

try {

patternsFiles =
Di st ri but edCache. get Local CacheFi |l es(j ob);

} catch (1 CException ioe) {

Systemerr. println("Caught
exception while getting cached
files: " +
StringUtils.stringifyException(ioe));

}
for (Path patternsFile :

Page 32

Hadoop Map/Reduce Tutorial

40.
41.
42.
43,
44,
45,

46.
47.

48.
49.

50.
51.
52.
53.

54.
55.
56.
57.

58.

patternsFiles) {

par seSki pFi |l e(patternsFile);

}
}
}

private void parseSki pFil e(Path
patternsFile) {

try {

Buf f eredReader fis = new
Buf f er edReader (new
Fi |l eReader (patternsFile.toString()));

String pattern = null;

while ((pattern =
fis.readLine()) !'= null) {

patternsToSki p. add(pattern);

}
} catch (1 CException ioe) {

Systemerr. println("Caught
exception while parsing the cached
file'" + patternsFile + "' : " +
StringUtils.stringifyException(ioe));

}
}

public void map(LongWitabl e key,
Text val ue, Qut put Col | ect or <Text,
IntWitabl e> output, Reporter
reporter) throws | CException {

String line = (caseSensitive) ?
val ue.toString()
val ue.toString().toLowerCase();

Page 33

59.
60.

61.

62.
63.
64.

65.

66.

67.
68.

69.
70.
71.
72.

73.
74.
75.
76.
77.

Hadoop Map/Reduce Tutorial

for (String pattern :
patternsToSkip) {

line = line.replaceAll (pattern

")
}

StringTokeni zer tokenizer =
StringTokeni zer (line);

whi | e

(tokeni zer. hasMor eTokens()) {

wor d. set (t okeni zer . next Token());

out put . col

reporter.incrCounter(Counters. | NPUT_WORDS

1);

i f ((++nunmRecords % 100)

processing " + nunmRecords +
+ "fromthe input file:

records
+ inputFile);

}
}
}

| ect (word, one);

new

== O){

reporter. set Status("Finished

public static class Reduce extends

MapReduceBase
Reducer <Text ,
IntWitable> {

i mpl ement s
IntWitabl e,

Text,

Page 34

Hadoop Map/Reduce Tutorial

78. public void reduce(Text key,
Iterator<lntWitabl e> val ues,
Qut put Col | ect or<Text, IntWitabl e>
out put, Reporter reporter) throws

| OException {
79. int sum= 0;
80. whil e (val ues. hasNext()) {
81. sum += val ues. next (). get();
82. }
83. out put . col | ect (key, new
IntWitable(sum);
84. }
85. }
86.
87. public int run(String[] args)
t hrows Exception {
88. JobConf conf = new
JobConf (get Conf (), WrdCount. cl ass);
89. conf . set JobNane("wordcount");
90.
91.
conf . set Qut put Keyd ass(Text. cl ass);
92.
conf . set Qut put Val ued ass(Int Wit able.class);
93.
94, conf . set Mapper C ass(Map. cl ass);
95.
conf . set Conbi ner d ass(Reduce. cl ass);
96.
conf . set Reducer O ass(Reduce. cl ass);
97.

Page 35

98.

99.

100.
101.

102.

103.
104.

105.

106.
107.
108.
109.
110.
111.

112.

113.
114.
115.
116.
117.

Hadoop Map/Reduce Tutorial

conf. set | nput For mat (Text | nput For mat . cl ass) ;

conf . set Qut put For mat (Text Qut put For mat . cl ass) ;

Li st<String> other_args = new
ArrayList<String>();

for (int i=0; i < args.length;
++i) {

if ("-skip".equals(args[i])) {

Di st ri but edCache. addCacheFi | e(new
Pat h(args[++i]).toUri (), conf);

conf . set Bool ean("wor dcount . ski p. patterns",
true);
} else {
other _args.add(args[i]);
}
}

Fi | el nput For nat . set | nput Pat hs(conf,

new Pat h(ot her _args. get(0)));

Fi | eQut put For mat . set Qut put Pat h(conf,
new Pat h(ot her_args.get(1)));

Jobd i ent.runJob(conf);

return O;

Page 36

Hadoop Map/Reduce Tutorial

118. public static void main(String[]
args) throws Exception {

1109. int res = Tool Runner. run(new
Configuration(), new WrdCount (),
args);

120. Systemexit(res);

121. }

122. }

123.

7.2. Sample Runs
Sample text-files asinput:

$ bin/ hadoop dfs -Is /usr/joe/wordcount/input/

[usr/joe/wordcount/input/fileOl

[usr/joe/wordcount/input/file02

$ bin/ hadoop dfs -cat /usr/joe/wordcount/input/fileOl
Hell o World, Bye World!

$ bi n/ hadoop dfs -cat /usr/joe/wordcount/input/file02
Hel | o Hadoop, Goodbye to hadoop.

Run the application:

$ bin/ hadoop jar /usr/joe/wordcount.jar org. myorg. WrdCount
[usr/joe/wordcount/input /usr/joe/wordcount/out put

Output:

$ bin/ hadoop dfs -cat /usr/joe/wordcount/out put/part-00000
Bye 1

Goodbye 1

Hadoop, 1

Hello 2

Wrld! 1

Wrld, 1

hadoop. 1

to 1

Notice that the inputs differ from the first version we looked at, and how they affect the

Page 37

Hadoop Map/Reduce Tutorial

outputs.

Now, lets plug-in a pattern-file which lists the word-patterns to be ignored, viathe
Di st ri but edCache.

$ hadoop dfs -cat /user/joe/wordcount/patterns.txt
\.
\,
\!
to

Run it again, this time with more options:

$ bi n/ hadoop jar /usr/joe/wordcount.jar org. morg. WrdCount
- Dwor dcount . case. sensitive=true /usr/joe/wordcount/i nput
[usr/joel/wordcount/out put -skip

[user/joel/ wordcount/ patterns.txt

As expected, the output:

$ bin/ hadoop dfs -cat /usr/joe/ wordcount/out put/part-00000
Bye 1

Goodbye 1

Hadoop 1

Hello 2

Wwrld 2

hadoop 1

Run it once more, this time switch-off case-sensitivity:

$ bin/hadoop jar /usr/joe/wordcount.jar org. morg. WrdCount
- Dwor dcount . case. sensitive=fal se /usr/joe/wordcount/input

[usr/joel/wordcount/out put -skip

[user/joel/ wordcount/ patterns.txt

Sure enough, the output:

$ bin/ hadoop dfs -cat /usr/joe/ wordcount/out put/part-00000
bye 1

goodbye 1

hadoop 2

hello 2

world 2

Page 38

Hadoop Map/Reduce Tutorial

7.3. Highlights

The second version of Wor dCount improves upon the previous one by using some features
offered by the Map/Reduce framework:

« Demonstrates how applications can access configuration parametersin theconf i gur e
method of the Mapper (and Reducer) implementations (lines 28-43).

« Demonstrates how the Di st ri but edCache can be used to distribute read-only data
needed by the jobs. Here it allows the user to specify word-patterns to skip while
counting (line 104).

« Demonsgtrates the utility of the Tool interface and the Generi cOpt i onsPar ser to
handle generic Hadoop command-line options (lines 87-116, 119).

« Demonstrates how applications can use Count er s (line 68) and how they can set
application-specific status information viathe Repor t er instance passed to the map
(and r educe) method (line 72).

Java and JNI are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United Sates and other countries.

Page 39

	1 Purpose
	2 Pre-requisites
	3 Overview
	4 Inputs and Outputs
	5 Example: WordCount v1.0
	5.1 Source Code
	5.2 Usage
	5.3 Walk-through

	6 Map/Reduce - User Interfaces
	6.1 Payload
	6.1.1 Mapper
	6.1.1.1 How Many Maps?

	6.1.2 Reducer
	6.1.2.1 Shuffle
	6.1.2.2 Sort
	6.1.2.2.1 Secondary Sort

	6.1.2.3 Reduce
	6.1.2.4 How Many Reduces?
	6.1.2.5 Reducer NONE

	6.1.3 Partitioner
	6.1.4 Reporter
	6.1.5 OutputCollector

	6.2 Job Configuration
	6.3 Task Execution & Environment
	6.3.1 Memory management
	6.3.2 Map Parameters
	6.3.3 Shuffle/Reduce Parameters
	6.3.4 Directory Structure
	6.3.5 Task JVM Reuse

	6.4 Job Submission and Monitoring
	6.4.1 Job Control

	6.5 Job Input
	6.5.1 InputSplit
	6.5.2 RecordReader

	6.6 Job Output
	6.6.1 OutputCommitter
	6.6.2 Task Side-Effect Files
	6.6.3 RecordWriter

	6.7 Other Useful Features
	6.7.1 Submitting Jobs to a Queue
	6.7.2 Counters
	6.7.3 DistributedCache
	6.7.4 Tool
	6.7.5 IsolationRunner
	6.7.6 Profiling
	6.7.7 Debugging
	6.7.7.1 How to distribute script file:
	6.7.7.2 How to submit script:
	6.7.7.3 Default Behavior:

	6.7.8 JobControl
	6.7.9 Data Compression
	6.7.9.1 Intermediate Outputs
	6.7.9.2 Job Outputs

	6.7.10 Skipping Bad Records

	7 Example: WordCount v2.0
	7.1 Source Code
	7.2 Sample Runs
	7.3 Highlights

