|
@@ -1,792 +0,0 @@
|
|
|
-~~ Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
-~~ you may not use this file except in compliance with the License.
|
|
|
-~~ You may obtain a copy of the License at
|
|
|
-~~
|
|
|
-~~ http://www.apache.org/licenses/LICENSE-2.0
|
|
|
-~~
|
|
|
-~~ Unless required by applicable law or agreed to in writing, software
|
|
|
-~~ distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
-~~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
-~~ See the License for the specific language governing permissions and
|
|
|
-~~ limitations under the License. See accompanying LICENSE file.
|
|
|
-
|
|
|
- ---
|
|
|
- Hadoop Streaming
|
|
|
- ---
|
|
|
- ---
|
|
|
- ${maven.build.timestamp}
|
|
|
-
|
|
|
-Hadoop Streaming
|
|
|
-
|
|
|
-%{toc|section=1|fromDepth=0|toDepth=4}
|
|
|
-
|
|
|
-* Hadoop Streaming
|
|
|
-
|
|
|
- Hadoop streaming is a utility that comes with the Hadoop distribution. The
|
|
|
- utility allows you to create and run Map/Reduce jobs with any executable or
|
|
|
- script as the mapper and/or the reducer. For example:
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -input myInputDirs \
|
|
|
- -output myOutputDir \
|
|
|
- -mapper /bin/cat \
|
|
|
- -reducer /usr/bin/wc
|
|
|
-+---+
|
|
|
-
|
|
|
-* How Streaming Works
|
|
|
-
|
|
|
- In the above example, both the mapper and the reducer are executables that
|
|
|
- read the input from stdin (line by line) and emit the output to stdout. The
|
|
|
- utility will create a Map/Reduce job, submit the job to an appropriate
|
|
|
- cluster, and monitor the progress of the job until it completes.
|
|
|
-
|
|
|
- When an executable is specified for mappers, each mapper task will launch the
|
|
|
- executable as a separate process when the mapper is initialized. As the
|
|
|
- mapper task runs, it converts its inputs into lines and feed the lines to the
|
|
|
- stdin of the process. In the meantime, the mapper collects the line oriented
|
|
|
- outputs from the stdout of the process and converts each line into a
|
|
|
- key/value pair, which is collected as the output of the mapper. By default,
|
|
|
- the <prefix of a line up to the first tab character> is the <<<key>>> and the
|
|
|
- rest of the line (excluding the tab character) will be the <<<value>>>. If
|
|
|
- there is no tab character in the line, then entire line is considered as key
|
|
|
- and the value is null. However, this can be customized by setting
|
|
|
- <<<-inputformat>>> command option, as discussed later.
|
|
|
-
|
|
|
- When an executable is specified for reducers, each reducer task will launch
|
|
|
- the executable as a separate process then the reducer is initialized. As the
|
|
|
- reducer task runs, it converts its input key/values pairs into lines and
|
|
|
- feeds the lines to the stdin of the process. In the meantime, the reducer
|
|
|
- collects the line oriented outputs from the stdout of the process, converts
|
|
|
- each line into a key/value pair, which is collected as the output of the
|
|
|
- reducer. By default, the prefix of a line up to the first tab character is
|
|
|
- the key and the rest of the line (excluding the tab character) is the value.
|
|
|
- However, this can be customized by setting <<<-outputformat>>> command
|
|
|
- option, as discussed later.
|
|
|
-
|
|
|
- This is the basis for the communication protocol between the Map/Reduce
|
|
|
- framework and the streaming mapper/reducer.
|
|
|
-
|
|
|
- User can specify <<<stream.non.zero.exit.is.failure>>> as <<<true>>> or
|
|
|
- <<<false>>> to make a streaming task that exits with a non-zero status to be
|
|
|
- <<<Failure>>> or <<<Success>>> respectively. By default, streaming tasks
|
|
|
- exiting with non-zero status are considered to be failed tasks.
|
|
|
-
|
|
|
-* Streaming Command Options
|
|
|
-
|
|
|
- Streaming supports streaming command options as well as
|
|
|
- {{{Generic_Command_Options}generic command options}}. The general command
|
|
|
- line syntax is shown below.
|
|
|
-
|
|
|
- <<Note:>> Be sure to place the generic options before the streaming options,
|
|
|
- otherwise the command will fail. For an example, see
|
|
|
- {{{Making_Archives_Available_to_Tasks}Making Archives Available to Tasks}}.
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop command [genericOptions] [streamingOptions]
|
|
|
-+---+
|
|
|
-
|
|
|
- The Hadoop streaming command options are listed here:
|
|
|
-
|
|
|
-*-------------*--------------------*------------------------------------------*
|
|
|
-|| Parameter || Optional/Required || Description |
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -input directoryname or filename | Required | Input location for mapper
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -output directoryname | Required | Output location for reducer
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -mapper executable or JavaClassName | Required | Mapper executable
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -reducer executable or JavaClassName | Required | Reducer executable
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -file filename | Optional | Make the mapper, reducer, or combiner executable
|
|
|
-| | | available locally on the compute nodes
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -inputformat JavaClassName | Optional | Class you supply should return
|
|
|
-| | | key/value pairs of Text class. If not
|
|
|
-| | | specified, TextInputFormat is used as
|
|
|
-| | | the default
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -outputformat JavaClassName | Optional | Class you supply should take
|
|
|
-| | | key/value pairs of Text class. If
|
|
|
-| | | not specified, TextOutputformat is
|
|
|
-| | | used as the default
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -partitioner JavaClassName | Optional | Class that determines which reduce a
|
|
|
-| | | key is sent to
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -combiner streamingCommand | Optional | Combiner executable for map output
|
|
|
-| or JavaClassName | |
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -cmdenv name=value | Optional | Pass environment variable to streaming
|
|
|
-| | | commands
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -inputreader | Optional | For backwards-compatibility: specifies a record
|
|
|
-| | | reader class (instead of an input format class)
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -verbose | Optional | Verbose output
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -lazyOutput | Optional | Create output lazily. For example, if the output
|
|
|
-| | | format is based on FileOutputFormat, the output file
|
|
|
-| | | is created only on the first call to Context.write
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -numReduceTasks | Optional | Specify the number of reducers
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -mapdebug | Optional | Script to call when map task fails
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -reducedebug | Optional | Script to call when reduce task fails
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-
|
|
|
-** Specifying a Java Class as the Mapper/Reducer
|
|
|
-
|
|
|
- You can supply a Java class as the mapper and/or the reducer.
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -input myInputDirs \
|
|
|
- -output myOutputDir \
|
|
|
- -inputformat org.apache.hadoop.mapred.KeyValueTextInputFormat \
|
|
|
- -mapper org.apache.hadoop.mapred.lib.IdentityMapper \
|
|
|
- -reducer /usr/bin/wc
|
|
|
-+---+
|
|
|
-
|
|
|
- You can specify <<<stream.non.zero.exit.is.failure>>> as <<<true>>> or
|
|
|
- <<<false>>> to make a streaming task that exits with a non-zero status to be
|
|
|
- <<<Failure>>> or <<<Success>>> respectively. By default, streaming tasks
|
|
|
- exiting with non-zero status are considered to be failed tasks.
|
|
|
-
|
|
|
-** Packaging Files With Job Submissions
|
|
|
-
|
|
|
- You can specify any executable as the mapper and/or the reducer. The
|
|
|
- executables do not need to pre-exist on the machines in the cluster; however,
|
|
|
- if they don't, you will need to use "-file" option to tell the framework to
|
|
|
- pack your executable files as a part of job submission. For example:
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -input myInputDirs \
|
|
|
- -output myOutputDir \
|
|
|
- -mapper myPythonScript.py \
|
|
|
- -reducer /usr/bin/wc \
|
|
|
- -file myPythonScript.py
|
|
|
-+---+
|
|
|
-
|
|
|
- The above example specifies a user defined Python executable as the mapper.
|
|
|
- The option "-file myPythonScript.py" causes the python executable shipped
|
|
|
- to the cluster machines as a part of job submission.
|
|
|
-
|
|
|
- In addition to executable files, you can also package other auxiliary files
|
|
|
- (such as dictionaries, configuration files, etc) that may be used by the
|
|
|
- mapper and/or the reducer. For example:
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -input myInputDirs \
|
|
|
- -output myOutputDir \
|
|
|
- -mapper myPythonScript.py \
|
|
|
- -reducer /usr/bin/wc \
|
|
|
- -file myPythonScript.py \
|
|
|
- -file myDictionary.txt
|
|
|
-+---+
|
|
|
-
|
|
|
-** Specifying Other Plugins for Jobs
|
|
|
-
|
|
|
- Just as with a normal Map/Reduce job, you can specify other plugins for a
|
|
|
- streaming job:
|
|
|
-
|
|
|
-+---+
|
|
|
- -inputformat JavaClassName
|
|
|
- -outputformat JavaClassName
|
|
|
- -partitioner JavaClassName
|
|
|
- -combiner streamingCommand or JavaClassName
|
|
|
-+---+
|
|
|
-
|
|
|
- The class you supply for the input format should return key/value pairs of
|
|
|
- Text class. If you do not specify an input format class, the TextInputFormat
|
|
|
- is used as the default. Since the TextInputFormat returns keys of
|
|
|
- LongWritable class, which are actually not part of the input data, the keys
|
|
|
- will be discarded; only the values will be piped to the streaming mapper.
|
|
|
-
|
|
|
- The class you supply for the output format is expected to take key/value
|
|
|
- pairs of Text class. If you do not specify an output format class, the
|
|
|
- TextOutputFormat is used as the default.
|
|
|
-
|
|
|
-** Setting Environment Variables
|
|
|
-
|
|
|
- To set an environment variable in a streaming command use:
|
|
|
-
|
|
|
-+---+
|
|
|
- -cmdenv EXAMPLE_DIR=/home/example/dictionaries/
|
|
|
-+---+
|
|
|
-
|
|
|
-* Generic Command Options
|
|
|
-
|
|
|
- Streaming supports {{{Streaming_Command_Options}streaming command options}}
|
|
|
- as well as generic command options. The general command line syntax is shown
|
|
|
- below.
|
|
|
-
|
|
|
- <<Note:>> Be sure to place the generic options before the streaming options,
|
|
|
- otherwise the command will fail. For an example, see
|
|
|
- {{{Making_Archives_Available_to_Tasks}Making Archives Available to Tasks}}.
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop command [genericOptions] [streamingOptions]
|
|
|
-+---+
|
|
|
-
|
|
|
- The Hadoop generic command options you can use with streaming are listed
|
|
|
- here:
|
|
|
-
|
|
|
-*-------------*--------------------*------------------------------------------*
|
|
|
-|| Parameter || Optional/Required || Description |
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -conf configuration_file | Optional | Specify an application configuration
|
|
|
-| | | file
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -D property=value | Optional | Use value for given property
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -fs host:port or local | Optional | Specify a namenode
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -files | Optional | Specify comma-separated files to be copied to the
|
|
|
-| | | Map/Reduce cluster
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -libjars | Optional | Specify comma-separated jar files to include in the
|
|
|
-| | | classpath
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-| -archives | Optional | Specify comma-separated archives to be unarchived on
|
|
|
-| | | the compute machines
|
|
|
-*-------------+--------------------+------------------------------------------+
|
|
|
-
|
|
|
-** Specifying Configuration Variables with the -D Option
|
|
|
-
|
|
|
- You can specify additional configuration variables by using
|
|
|
- "-D \<property\>=\<value\>".
|
|
|
-
|
|
|
-*** Specifying Directories
|
|
|
-
|
|
|
- To change the local temp directory use:
|
|
|
-
|
|
|
-+---+
|
|
|
- -D dfs.data.dir=/tmp
|
|
|
-+---+
|
|
|
-
|
|
|
- To specify additional local temp directories use:
|
|
|
-
|
|
|
-+---+
|
|
|
- -D mapred.local.dir=/tmp/local
|
|
|
- -D mapred.system.dir=/tmp/system
|
|
|
- -D mapred.temp.dir=/tmp/temp
|
|
|
-+---+
|
|
|
-
|
|
|
- <<Note:>> For more details on job configuration parameters see:
|
|
|
- {{{./mapred-default.xml}mapred-default.xml}}
|
|
|
-
|
|
|
-*** Specifying Map-Only Jobs
|
|
|
-
|
|
|
- Often, you may want to process input data using a map function only. To do
|
|
|
- this, simply set <<<mapreduce.job.reduces>>> to zero. The Map/Reduce
|
|
|
- framework will not create any reducer tasks. Rather, the outputs of the
|
|
|
- mapper tasks will be the final output of the job.
|
|
|
-
|
|
|
-+---+
|
|
|
- -D mapreduce.job.reduces=0
|
|
|
-+---+
|
|
|
-
|
|
|
- To be backward compatible, Hadoop Streaming also supports the "-reducer NONE"
|
|
|
- option, which is equivalent to "-D mapreduce.job.reduces=0".
|
|
|
-
|
|
|
-*** Specifying the Number of Reducers
|
|
|
-
|
|
|
- To specify the number of reducers, for example two, use:
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -D mapreduce.job.reduces=2 \
|
|
|
- -input myInputDirs \
|
|
|
- -output myOutputDir \
|
|
|
- -mapper /bin/cat \
|
|
|
- -reducer /usr/bin/wc
|
|
|
-+---+
|
|
|
-
|
|
|
-*** Customizing How Lines are Split into Key/Value Pairs
|
|
|
-
|
|
|
- As noted earlier, when the Map/Reduce framework reads a line from the stdout
|
|
|
- of the mapper, it splits the line into a key/value pair. By default, the
|
|
|
- prefix of the line up to the first tab character is the key and the rest of
|
|
|
- the line (excluding the tab character) is the value.
|
|
|
-
|
|
|
- However, you can customize this default. You can specify a field separator
|
|
|
- other than the tab character (the default), and you can specify the nth
|
|
|
- (n >= 1) character rather than the first character in a line (the default) as
|
|
|
- the separator between the key and value. For example:
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -D stream.map.output.field.separator=. \
|
|
|
- -D stream.num.map.output.key.fields=4 \
|
|
|
- -input myInputDirs \
|
|
|
- -output myOutputDir \
|
|
|
- -mapper /bin/cat \
|
|
|
- -reducer /bin/cat
|
|
|
-+---+
|
|
|
-
|
|
|
- In the above example, "-D stream.map.output.field.separator=." specifies "."
|
|
|
- as the field separator for the map outputs, and the prefix up to the fourth
|
|
|
- "." in a line will be the key and the rest of the line (excluding the fourth
|
|
|
- ".") will be the value. If a line has less than four "."s, then the whole
|
|
|
- line will be the key and the value will be an empty Text object (like the one
|
|
|
- created by new Text("")).
|
|
|
-
|
|
|
- Similarly, you can use "-D stream.reduce.output.field.separator=SEP" and
|
|
|
- "-D stream.num.reduce.output.fields=NUM" to specify the nth field separator
|
|
|
- in a line of the reduce outputs as the separator between the key and the
|
|
|
- value.
|
|
|
-
|
|
|
- Similarly, you can specify "stream.map.input.field.separator" and
|
|
|
- "stream.reduce.input.field.separator" as the input separator for Map/Reduce
|
|
|
- inputs. By default the separator is the tab character.
|
|
|
-
|
|
|
-** Working with Large Files and Archives
|
|
|
-
|
|
|
- The -files and -archives options allow you to make files and archives
|
|
|
- available to the tasks. The argument is a URI to the file or archive that you
|
|
|
- have already uploaded to HDFS. These files and archives are cached across
|
|
|
- jobs. You can retrieve the host and fs_port values from the fs.default.name
|
|
|
- config variable.
|
|
|
-
|
|
|
- <<Note:>> The -files and -archives options are generic options. Be sure to
|
|
|
- place the generic options before the command options, otherwise the command
|
|
|
- will fail.
|
|
|
-
|
|
|
-*** Making Files Available to Tasks
|
|
|
-
|
|
|
- The -files option creates a symlink in the current working directory of the
|
|
|
- tasks that points to the local copy of the file.
|
|
|
-
|
|
|
- In this example, Hadoop automatically creates a symlink named testfile.txt in
|
|
|
- the current working directory of the tasks. This symlink points to the local
|
|
|
- copy of testfile.txt.
|
|
|
-
|
|
|
-+---+
|
|
|
--files hdfs://host:fs_port/user/testfile.txt
|
|
|
-+---+
|
|
|
-
|
|
|
- User can specify a different symlink name for -files using #.
|
|
|
-
|
|
|
-+---+
|
|
|
--files hdfs://host:fs_port/user/testfile.txt#testfile
|
|
|
-+---+
|
|
|
-
|
|
|
- Multiple entries can be specified like this:
|
|
|
-
|
|
|
-+---+
|
|
|
--files hdfs://host:fs_port/user/testfile1.txt,hdfs://host:fs_port/user/testfile2.txt
|
|
|
-+---+
|
|
|
-
|
|
|
-*** Making Archives Available to Tasks
|
|
|
-
|
|
|
- The -archives option allows you to copy jars locally to the current working
|
|
|
- directory of tasks and automatically unjar the files.
|
|
|
-
|
|
|
- In this example, Hadoop automatically creates a symlink named testfile.jar in
|
|
|
- the current working directory of tasks. This symlink points to the directory
|
|
|
- that stores the unjarred contents of the uploaded jar file.
|
|
|
-
|
|
|
-+---+
|
|
|
--archives hdfs://host:fs_port/user/testfile.jar
|
|
|
-+---+
|
|
|
-
|
|
|
- User can specify a different symlink name for -archives using #.
|
|
|
-
|
|
|
-+---+
|
|
|
--archives hdfs://host:fs_port/user/testfile.tgz#tgzdir
|
|
|
-+---+
|
|
|
-
|
|
|
- In this example, the input.txt file has two lines specifying the names of the
|
|
|
- two files: cachedir.jar/cache.txt and cachedir.jar/cache2.txt. "cachedir.jar"
|
|
|
- is a symlink to the archived directory, which has the files "cache.txt" and
|
|
|
- "cache2.txt".
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -archives 'hdfs://hadoop-nn1.example.com/user/me/samples/cachefile/cachedir.jar' \
|
|
|
- -D mapreduce.job.maps=1 \
|
|
|
- -D mapreduce.job.reduces=1 \
|
|
|
- -D mapreduce.job.name="Experiment" \
|
|
|
- -input "/user/me/samples/cachefile/input.txt" \
|
|
|
- -output "/user/me/samples/cachefile/out" \
|
|
|
- -mapper "xargs cat" \
|
|
|
- -reducer "cat"
|
|
|
-
|
|
|
-$ ls test_jar/
|
|
|
-cache.txt cache2.txt
|
|
|
-
|
|
|
-$ jar cvf cachedir.jar -C test_jar/ .
|
|
|
-added manifest
|
|
|
-adding: cache.txt(in = 30) (out= 29)(deflated 3%)
|
|
|
-adding: cache2.txt(in = 37) (out= 35)(deflated 5%)
|
|
|
-
|
|
|
-$ hdfs dfs -put cachedir.jar samples/cachefile
|
|
|
-
|
|
|
-$ hdfs dfs -cat /user/me/samples/cachefile/input.txt
|
|
|
-cachedir.jar/cache.txt
|
|
|
-cachedir.jar/cache2.txt
|
|
|
-
|
|
|
-$ cat test_jar/cache.txt
|
|
|
-This is just the cache string
|
|
|
-
|
|
|
-$ cat test_jar/cache2.txt
|
|
|
-This is just the second cache string
|
|
|
-
|
|
|
-$ hdfs dfs -ls /user/me/samples/cachefile/out
|
|
|
-Found 2 items
|
|
|
--rw-r--r-- 1 me supergroup 0 2013-11-14 17:00 /user/me/samples/cachefile/out/_SUCCESS
|
|
|
--rw-r--r-- 1 me supergroup 69 2013-11-14 17:00 /user/me/samples/cachefile/out/part-00000
|
|
|
-
|
|
|
-$ hdfs dfs -cat /user/me/samples/cachefile/out/part-00000
|
|
|
-This is just the cache string
|
|
|
-This is just the second cache string
|
|
|
-+---+
|
|
|
-
|
|
|
-* More Usage Examples
|
|
|
-
|
|
|
-** Hadoop Partitioner Class
|
|
|
-
|
|
|
- Hadoop has a library class,
|
|
|
- {{{../../api/org/apache/hadoop/mapred/lib/KeyFieldBasedPartitioner.html}
|
|
|
- KeyFieldBasedPartitioner}}, that is useful for many applications. This class
|
|
|
- allows the Map/Reduce framework to partition the map outputs based on certain
|
|
|
- key fields, not the whole keys. For example:
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -D stream.map.output.field.separator=. \
|
|
|
- -D stream.num.map.output.key.fields=4 \
|
|
|
- -D map.output.key.field.separator=. \
|
|
|
- -D mapreduce.partition.keypartitioner.options=-k1,2 \
|
|
|
- -D mapreduce.job.reduces=12 \
|
|
|
- -input myInputDirs \
|
|
|
- -output myOutputDir \
|
|
|
- -mapper /bin/cat \
|
|
|
- -reducer /bin/cat \
|
|
|
- -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner
|
|
|
-+---+
|
|
|
-
|
|
|
- Here, <-D stream.map.output.field.separator=.> and
|
|
|
- <-D stream.num.map.output.key.fields=4> are as explained in previous example.
|
|
|
- The two variables are used by streaming to identify the key/value pair of
|
|
|
- mapper.
|
|
|
-
|
|
|
- The map output keys of the above Map/Reduce job normally have four fields
|
|
|
- separated by ".". However, the Map/Reduce framework will partition the map
|
|
|
- outputs by the first two fields of the keys using the
|
|
|
- <-D mapred.text.key.partitioner.options=-k1,2> option. Here,
|
|
|
- <-D map.output.key.field.separator=.> specifies the separator for the
|
|
|
- partition. This guarantees that all the key/value pairs with the same first
|
|
|
- two fields in the keys will be partitioned into the same reducer.
|
|
|
-
|
|
|
- <This is effectively equivalent to specifying the first two fields as the
|
|
|
- primary key and the next two fields as the secondary. The primary key is used
|
|
|
- for partitioning, and the combination of the primary and secondary keys is
|
|
|
- used for sorting.> A simple illustration is shown here:
|
|
|
-
|
|
|
- Output of map (the keys)
|
|
|
-
|
|
|
-+---+
|
|
|
-11.12.1.2
|
|
|
-11.14.2.3
|
|
|
-11.11.4.1
|
|
|
-11.12.1.1
|
|
|
-11.14.2.2
|
|
|
-+---+
|
|
|
-
|
|
|
- Partition into 3 reducers (the first 2 fields are used as keys for partition)
|
|
|
-
|
|
|
-+---+
|
|
|
-11.11.4.1
|
|
|
------------
|
|
|
-11.12.1.2
|
|
|
-11.12.1.1
|
|
|
------------
|
|
|
-11.14.2.3
|
|
|
-11.14.2.2
|
|
|
-+---+
|
|
|
-
|
|
|
- Sorting within each partition for the reducer(all 4 fields used for sorting)
|
|
|
-
|
|
|
-+---+
|
|
|
-11.11.4.1
|
|
|
------------
|
|
|
-11.12.1.1
|
|
|
-11.12.1.2
|
|
|
------------
|
|
|
-11.14.2.2
|
|
|
-11.14.2.3
|
|
|
-+---+
|
|
|
-
|
|
|
-** Hadoop Comparator Class
|
|
|
-
|
|
|
- Hadoop has a library class,
|
|
|
- {{{../../api/org/apache/hadoop/mapreduce/lib/partition/KeyFieldBasedComparator.html}
|
|
|
- KeyFieldBasedComparator}}, that is useful for many applications. This class
|
|
|
- provides a subset of features provided by the Unix/GNU Sort. For example:
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -D mapreduce.job.output.key.comparator.class=org.apache.hadoop.mapreduce.lib.partition.KeyFieldBasedComparator \
|
|
|
- -D stream.map.output.field.separator=. \
|
|
|
- -D stream.num.map.output.key.fields=4 \
|
|
|
- -D mapreduce.map.output.key.field.separator=. \
|
|
|
- -D mapreduce.partition.keycomparator.options=-k2,2nr \
|
|
|
- -D mapreduce.job.reduces=1 \
|
|
|
- -input myInputDirs \
|
|
|
- -output myOutputDir \
|
|
|
- -mapper /bin/cat \
|
|
|
- -reducer /bin/cat
|
|
|
-+---+
|
|
|
-
|
|
|
- The map output keys of the above Map/Reduce job normally have four fields
|
|
|
- separated by ".". However, the Map/Reduce framework will sort the outputs by
|
|
|
- the second field of the keys using the
|
|
|
- <-D mapreduce.partition.keycomparator.options=-k2,2nr> option. Here, <-n>
|
|
|
- specifies that the sorting is numerical sorting and <-r> specifies that the
|
|
|
- result should be reversed. A simple illustration is shown below:
|
|
|
-
|
|
|
- Output of map (the keys)
|
|
|
-
|
|
|
-+---+
|
|
|
-11.12.1.2
|
|
|
-11.14.2.3
|
|
|
-11.11.4.1
|
|
|
-11.12.1.1
|
|
|
-11.14.2.2
|
|
|
-+---+
|
|
|
-
|
|
|
- Sorting output for the reducer (where second field used for sorting)
|
|
|
-
|
|
|
-+---+
|
|
|
-11.14.2.3
|
|
|
-11.14.2.2
|
|
|
-11.12.1.2
|
|
|
-11.12.1.1
|
|
|
-11.11.4.1
|
|
|
-+---+
|
|
|
-
|
|
|
-** Hadoop Aggregate Package
|
|
|
-
|
|
|
- Hadoop has a library package called
|
|
|
- {{{../../org/apache/hadoop/mapred/lib/aggregate/package-summary.html}
|
|
|
- Aggregate}}. Aggregate provides a special reducer class and a special
|
|
|
- combiner class, and a list of simple aggregators that perform aggregations
|
|
|
- such as "sum", "max", "min" and so on over a sequence of values. Aggregate
|
|
|
- allows you to define a mapper plugin class that is expected to generate
|
|
|
- "aggregatable items" for each input key/value pair of the mappers. The
|
|
|
- combiner/reducer will aggregate those aggregatable items by invoking the
|
|
|
- appropriate aggregators.
|
|
|
-
|
|
|
- To use Aggregate, simply specify "-reducer aggregate":
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -input myInputDirs \
|
|
|
- -output myOutputDir \
|
|
|
- -mapper myAggregatorForKeyCount.py \
|
|
|
- -reducer aggregate \
|
|
|
- -file myAggregatorForKeyCount.py \
|
|
|
-+---+
|
|
|
-
|
|
|
- The python program myAggregatorForKeyCount.py looks like:
|
|
|
-
|
|
|
-+---+
|
|
|
-#!/usr/bin/python
|
|
|
-
|
|
|
-import sys;
|
|
|
-
|
|
|
-def generateLongCountToken(id):
|
|
|
- return "LongValueSum:" + id + "\t" + "1"
|
|
|
-
|
|
|
-def main(argv):
|
|
|
- line = sys.stdin.readline();
|
|
|
- try:
|
|
|
- while line:
|
|
|
- line = line[:-1];
|
|
|
- fields = line.split("\t");
|
|
|
- print generateLongCountToken(fields[0]);
|
|
|
- line = sys.stdin.readline();
|
|
|
- except "end of file":
|
|
|
- return None
|
|
|
-if __name__ == "__main__":
|
|
|
- main(sys.argv)
|
|
|
-+---+
|
|
|
-
|
|
|
-** Hadoop Field Selection Class
|
|
|
-
|
|
|
- Hadoop has a library class,
|
|
|
- {{{../../api/org/apache/hadoop/mapred/lib/FieldSelectionMapReduce.html}
|
|
|
- FieldSelectionMapReduce}}, that effectively allows you to process text data
|
|
|
- like the unix "cut" utility. The map function defined in the class treats
|
|
|
- each input key/value pair as a list of fields. You can specify the field
|
|
|
- separator (the default is the tab character). You can select an arbitrary
|
|
|
- list of fields as the map output key, and an arbitrary list of fields as the
|
|
|
- map output value. Similarly, the reduce function defined in the class treats
|
|
|
- each input key/value pair as a list of fields. You can select an arbitrary
|
|
|
- list of fields as the reduce output key, and an arbitrary list of fields as
|
|
|
- the reduce output value. For example:
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -D mapreduce.map.output.key.field.separator=. \
|
|
|
- -D mapreduce.partition.keypartitioner.options=-k1,2 \
|
|
|
- -D mapreduce.fieldsel.data.field.separator=. \
|
|
|
- -D mapreduce.fieldsel.map.output.key.value.fields.spec=6,5,1-3:0- \
|
|
|
- -D mapreduce.fieldsel.reduce.output.key.value.fields.spec=0-2:5- \
|
|
|
- -D mapreduce.map.output.key.class=org.apache.hadoop.io.Text \
|
|
|
- -D mapreduce.job.reduces=12 \
|
|
|
- -input myInputDirs \
|
|
|
- -output myOutputDir \
|
|
|
- -mapper org.apache.hadoop.mapred.lib.FieldSelectionMapReduce \
|
|
|
- -reducer org.apache.hadoop.mapred.lib.FieldSelectionMapReduce \
|
|
|
- -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner
|
|
|
-+---+
|
|
|
-
|
|
|
- The option "-D
|
|
|
- mapreduce.fieldsel.map.output.key.value.fields.spec=6,5,1-3:0-" specifies
|
|
|
- key/value selection for the map outputs. Key selection spec and value
|
|
|
- selection spec are separated by ":". In this case, the map output key will
|
|
|
- consist of fields 6, 5, 1, 2, and 3. The map output value will consist of all
|
|
|
- fields (0- means field 0 and all the subsequent fields).
|
|
|
-
|
|
|
- The option "-D mapreduce.fieldsel.reduce.output.key.value.fields.spec=0-2:5-"
|
|
|
- specifies key/value selection for the reduce outputs. In this case, the
|
|
|
- reduce output key will consist of fields 0, 1, 2 (corresponding to the
|
|
|
- original fields 6, 5, 1). The reduce output value will consist of all fields
|
|
|
- starting from field 5 (corresponding to all the original fields).
|
|
|
-
|
|
|
-* Frequently Asked Questions
|
|
|
-
|
|
|
-** How do I use Hadoop Streaming to run an arbitrary set of (semi) independent
|
|
|
- tasks?
|
|
|
-
|
|
|
- Often you do not need the full power of Map Reduce, but only need to run
|
|
|
- multiple instances of the same program - either on different parts of the
|
|
|
- data, or on the same data, but with different parameters. You can use Hadoop
|
|
|
- Streaming to do this.
|
|
|
-
|
|
|
-** How do I process files, one per map?
|
|
|
-
|
|
|
- As an example, consider the problem of zipping (compressing) a set of files
|
|
|
- across the hadoop cluster. You can achieve this by using Hadoop Streaming
|
|
|
- and custom mapper script:
|
|
|
-
|
|
|
- * Generate a file containing the full HDFS path of the input files. Each map
|
|
|
- task would get one file name as input.
|
|
|
-
|
|
|
- * Create a mapper script which, given a filename, will get the file to local
|
|
|
- disk, gzip the file and put it back in the desired output directory.
|
|
|
-
|
|
|
-** How many reducers should I use?
|
|
|
-
|
|
|
- See MapReduce Tutorial for details: {{{./MapReduceTutorial.html#Reducer}
|
|
|
- Reducer}}
|
|
|
-
|
|
|
-** If I set up an alias in my shell script, will that work after -mapper?
|
|
|
-
|
|
|
- For example, say I do: alias c1='cut -f1'. Will -mapper "c1" work?
|
|
|
-
|
|
|
- Using an alias will not work, but variable substitution is allowed as shown
|
|
|
- in this example:
|
|
|
-
|
|
|
-+---+
|
|
|
-$ hdfs dfs -cat /user/me/samples/student_marks
|
|
|
-alice 50
|
|
|
-bruce 70
|
|
|
-charlie 80
|
|
|
-dan 75
|
|
|
-
|
|
|
-$ c2='cut -f2'; hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -D mapreduce.job.name='Experiment' \
|
|
|
- -input /user/me/samples/student_marks \
|
|
|
- -output /user/me/samples/student_out \
|
|
|
- -mapper "$c2" -reducer 'cat'
|
|
|
-
|
|
|
-$ hdfs dfs -cat /user/me/samples/student_out/part-00000
|
|
|
-50
|
|
|
-70
|
|
|
-75
|
|
|
-80
|
|
|
-+---+
|
|
|
-
|
|
|
-** Can I use UNIX pipes?
|
|
|
-
|
|
|
- For example, will -mapper "cut -f1 | sed s/foo/bar/g" work?
|
|
|
-
|
|
|
- Currently this does not work and gives an "java.io.IOException: Broken pipe"
|
|
|
- error. This is probably a bug that needs to be investigated.
|
|
|
-
|
|
|
-** What do I do if I get the "No space left on device" error?
|
|
|
-
|
|
|
- For example, when I run a streaming job by distributing large executables
|
|
|
- (for example, 3.6G) through the -file option, I get a "No space left on
|
|
|
- device" error.
|
|
|
-
|
|
|
- The jar packaging happens in a directory pointed to by the configuration
|
|
|
- variable stream.tmpdir. The default value of stream.tmpdir is /tmp. Set the
|
|
|
- value to a directory with more space:
|
|
|
-
|
|
|
-+---+
|
|
|
--D stream.tmpdir=/export/bigspace/...
|
|
|
-+---+
|
|
|
-
|
|
|
-** How do I specify multiple input directories?
|
|
|
-
|
|
|
- You can specify multiple input directories with multiple '-input' options:
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -input '/user/foo/dir1' -input '/user/foo/dir2' \
|
|
|
- (rest of the command)
|
|
|
-+---+
|
|
|
-
|
|
|
-** How do I generate output files with gzip format?
|
|
|
-
|
|
|
- Instead of plain text files, you can generate gzip files as your generated
|
|
|
- output. Pass '-D mapreduce.output.fileoutputformat.compress=true -D
|
|
|
- mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec'
|
|
|
- as option to your streaming job.
|
|
|
-
|
|
|
-** How do I provide my own input/output format with streaming?
|
|
|
-
|
|
|
- You can specify your own custom class by packing them and putting the custom
|
|
|
- jar to \$\{HADOOP_CLASSPATH\}.
|
|
|
-
|
|
|
-** How do I parse XML documents using streaming?
|
|
|
-
|
|
|
- You can use the record reader StreamXmlRecordReader to process XML documents.
|
|
|
-
|
|
|
-+---+
|
|
|
-hadoop jar hadoop-streaming-${project.version}.jar \
|
|
|
- -inputreader "StreamXmlRecord,begin=BEGIN_STRING,end=END_STRING" \
|
|
|
- (rest of the command)
|
|
|
-+---+
|
|
|
-
|
|
|
- Anything found between BEGIN_STRING and END_STRING would be treated as one
|
|
|
- record for map tasks.
|
|
|
-
|
|
|
-** How do I update counters in streaming applications?
|
|
|
-
|
|
|
- A streaming process can use the stderr to emit counter information.
|
|
|
- <<<reporter:counter:\<group\>,\<counter\>,\<amount\>>>> should be sent to
|
|
|
- stderr to update the counter.
|
|
|
-
|
|
|
-** How do I update status in streaming applications?
|
|
|
-
|
|
|
- A streaming process can use the stderr to emit status information. To set a
|
|
|
- status, <<<reporter:status:\<message\>>>> should be sent to stderr.
|
|
|
-
|
|
|
-** How do I get the Job variables in a streaming job's mapper/reducer?
|
|
|
-
|
|
|
- See {{{./MapReduceTutorial.html#Configured_Parameters}
|
|
|
- Configured Parameters}}. During the execution of a streaming job, the names
|
|
|
- of the "mapred" parameters are transformed. The dots ( . ) become underscores
|
|
|
- ( _ ). For example, mapreduce.job.id becomes mapreduce_job_id and
|
|
|
- mapreduce.job.jar becomes mapreduce_job_jar. In your code, use the parameter
|
|
|
- names with the underscores.
|