|
@@ -1,3131 +0,0 @@
|
|
|
-<?xml version="1.0"?>
|
|
|
-<!--
|
|
|
- Licensed to the Apache Software Foundation (ASF) under one or more
|
|
|
- contributor license agreements. See the NOTICE file distributed with
|
|
|
- this work for additional information regarding copyright ownership.
|
|
|
- The ASF licenses this file to You under the Apache License, Version 2.0
|
|
|
- (the "License"); you may not use this file except in compliance with
|
|
|
- the License. You may obtain a copy of the License at
|
|
|
-
|
|
|
- http://www.apache.org/licenses/LICENSE-2.0
|
|
|
-
|
|
|
- Unless required by applicable law or agreed to in writing, software
|
|
|
- distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
- See the License for the specific language governing permissions and
|
|
|
- limitations under the License.
|
|
|
--->
|
|
|
-
|
|
|
-<!DOCTYPE document PUBLIC "-//APACHE//DTD Documentation V2.0//EN" "http://forrest.apache.org/dtd/document-v20.dtd">
|
|
|
-
|
|
|
-<document>
|
|
|
-
|
|
|
- <header>
|
|
|
- <title>Map/Reduce Tutorial</title>
|
|
|
- </header>
|
|
|
-
|
|
|
- <body>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Purpose</title>
|
|
|
-
|
|
|
- <p>This document comprehensively describes all user-facing facets of the
|
|
|
- Hadoop Map/Reduce framework and serves as a tutorial.
|
|
|
- </p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Pre-requisites</title>
|
|
|
-
|
|
|
- <p>Ensure that Hadoop is installed, configured and is running. More
|
|
|
- details:</p>
|
|
|
- <ul>
|
|
|
- <li>
|
|
|
- <a href="quickstart.html">Hadoop Quick Start</a> for first-time users.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- <a href="cluster_setup.html">Hadoop Cluster Setup</a> for large,
|
|
|
- distributed clusters.
|
|
|
- </li>
|
|
|
- </ul>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Overview</title>
|
|
|
-
|
|
|
- <p>Hadoop Map/Reduce is a software framework for easily writing
|
|
|
- applications which process vast amounts of data (multi-terabyte data-sets)
|
|
|
- in-parallel on large clusters (thousands of nodes) of commodity
|
|
|
- hardware in a reliable, fault-tolerant manner.</p>
|
|
|
-
|
|
|
- <p>A Map/Reduce <em>job</em> usually splits the input data-set into
|
|
|
- independent chunks which are processed by the <em>map tasks</em> in a
|
|
|
- completely parallel manner. The framework sorts the outputs of the maps,
|
|
|
- which are then input to the <em>reduce tasks</em>. Typically both the
|
|
|
- input and the output of the job are stored in a file-system. The framework
|
|
|
- takes care of scheduling tasks, monitoring them and re-executes the failed
|
|
|
- tasks.</p>
|
|
|
-
|
|
|
- <p>Typically the compute nodes and the storage nodes are the same, that is,
|
|
|
- the Map/Reduce framework and the Hadoop Distributed File System (see <a href="hdfs_design.html">HDFS Architecture </a>)
|
|
|
- are running on the same set of nodes. This configuration
|
|
|
- allows the framework to effectively schedule tasks on the nodes where data
|
|
|
- is already present, resulting in very high aggregate bandwidth across the
|
|
|
- cluster.</p>
|
|
|
-
|
|
|
- <p>The Map/Reduce framework consists of a single master
|
|
|
- <code>JobTracker</code> and one slave <code>TaskTracker</code> per
|
|
|
- cluster-node. The master is responsible for scheduling the jobs' component
|
|
|
- tasks on the slaves, monitoring them and re-executing the failed tasks. The
|
|
|
- slaves execute the tasks as directed by the master.</p>
|
|
|
-
|
|
|
- <p>Minimally, applications specify the input/output locations and supply
|
|
|
- <em>map</em> and <em>reduce</em> functions via implementations of
|
|
|
- appropriate interfaces and/or abstract-classes. These, and other job
|
|
|
- parameters, comprise the <em>job configuration</em>. The Hadoop
|
|
|
- <em>job client</em> then submits the job (jar/executable etc.) and
|
|
|
- configuration to the <code>JobTracker</code> which then assumes the
|
|
|
- responsibility of distributing the software/configuration to the slaves,
|
|
|
- scheduling tasks and monitoring them, providing status and diagnostic
|
|
|
- information to the job-client.</p>
|
|
|
-
|
|
|
- <p>Although the Hadoop framework is implemented in Java<sup>TM</sup>,
|
|
|
- Map/Reduce applications need not be written in Java.</p>
|
|
|
- <ul>
|
|
|
- <li>
|
|
|
- <a href="ext:api/org/apache/hadoop/streaming/package-summary">
|
|
|
- Hadoop Streaming</a> is a utility which allows users to create and run
|
|
|
- jobs with any executables (e.g. shell utilities) as the mapper and/or
|
|
|
- the reducer.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/pipes/package-summary">
|
|
|
- Hadoop Pipes</a> is a <a href="http://www.swig.org/">SWIG</a>-
|
|
|
- compatible <em>C++ API</em> to implement Map/Reduce applications (non
|
|
|
- JNI<sup>TM</sup> based).
|
|
|
- </li>
|
|
|
- </ul>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Inputs and Outputs</title>
|
|
|
-
|
|
|
- <p>The Map/Reduce framework operates exclusively on
|
|
|
- <code><key, value></code> pairs, that is, the framework views the
|
|
|
- input to the job as a set of <code><key, value></code> pairs and
|
|
|
- produces a set of <code><key, value></code> pairs as the output of
|
|
|
- the job, conceivably of different types.</p>
|
|
|
-
|
|
|
- <p>The <code>key</code> and <code>value</code> classes have to be
|
|
|
- serializable by the framework and hence need to implement the
|
|
|
- <a href="ext:api/org/apache/hadoop/io/writable">Writable</a>
|
|
|
- interface. Additionally, the <code>key</code> classes have to implement the
|
|
|
- <a href="ext:api/org/apache/hadoop/io/writablecomparable">
|
|
|
- WritableComparable</a> interface to facilitate sorting by the framework.
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Input and Output types of a Map/Reduce job:</p>
|
|
|
- <p>
|
|
|
- (input) <code><k1, v1></code>
|
|
|
- ->
|
|
|
- <strong>map</strong>
|
|
|
- ->
|
|
|
- <code><k2, v2></code>
|
|
|
- ->
|
|
|
- <strong>combine</strong>
|
|
|
- ->
|
|
|
- <code><k2, v2></code>
|
|
|
- ->
|
|
|
- <strong>reduce</strong>
|
|
|
- ->
|
|
|
- <code><k3, v3></code> (output)
|
|
|
- </p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Example: WordCount v1.0</title>
|
|
|
-
|
|
|
- <p>Before we jump into the details, lets walk through an example Map/Reduce
|
|
|
- application to get a flavour for how they work.</p>
|
|
|
-
|
|
|
- <p><code>WordCount</code> is a simple application that counts the number of
|
|
|
- occurences of each word in a given input set.</p>
|
|
|
-
|
|
|
- <p>This works with a local-standalone, pseudo-distributed or fully-distributed
|
|
|
- Hadoop installation(see <a href="quickstart.html"> Hadoop Quick Start</a>).</p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Source Code</title>
|
|
|
-
|
|
|
- <table>
|
|
|
- <tr>
|
|
|
- <th></th>
|
|
|
- <th>WordCount.java</th>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>1.</td>
|
|
|
- <td>
|
|
|
- <code>package org.myorg;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>2.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>3.</td>
|
|
|
- <td>
|
|
|
- <code>import java.io.IOException;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>4.</td>
|
|
|
- <td>
|
|
|
- <code>import java.util.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>5.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>6.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.fs.Path;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>7.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.conf.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>8.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.io.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>9.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.mapred.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>10.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.util.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>11.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>12.</td>
|
|
|
- <td>
|
|
|
- <code>public class WordCount {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>13.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>14.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- public static class Map extends MapReduceBase
|
|
|
- implements Mapper<LongWritable, Text, Text, IntWritable> {
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>15.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- private final static IntWritable one = new IntWritable(1);
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>16.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>private Text word = new Text();</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>17.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>18.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- public void map(LongWritable key, Text value,
|
|
|
- OutputCollector<Text, IntWritable> output,
|
|
|
- Reporter reporter) throws IOException {
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>19.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>String line = value.toString();</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>20.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>StringTokenizer tokenizer = new StringTokenizer(line);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>21.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>while (tokenizer.hasMoreTokens()) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>22.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>word.set(tokenizer.nextToken());</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>23.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>output.collect(word, one);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>24.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>25.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>26.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>27.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>28.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- public static class Reduce extends MapReduceBase implements
|
|
|
- Reducer<Text, IntWritable, Text, IntWritable> {
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>29.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- public void reduce(Text key, Iterator<IntWritable> values,
|
|
|
- OutputCollector<Text, IntWritable> output,
|
|
|
- Reporter reporter) throws IOException {
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>30.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>int sum = 0;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>31.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>while (values.hasNext()) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>32.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>sum += values.next().get();</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>33.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>34.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>output.collect(key, new IntWritable(sum));</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>35.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>36.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>37.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>38.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- public static void main(String[] args) throws Exception {
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>39.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- JobConf conf = new JobConf(WordCount.class);
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>40.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setJobName("wordcount");</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>41.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>42.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setOutputKeyClass(Text.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>43.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setOutputValueClass(IntWritable.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>44.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>45.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setMapperClass(Map.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>46.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setCombinerClass(Reduce.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>47.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setReducerClass(Reduce.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>48.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>49.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setInputFormat(TextInputFormat.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>50.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setOutputFormat(TextOutputFormat.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>51.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>52.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>FileInputFormat.setInputPaths(conf, new Path(args[0]));</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>53.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>FileOutputFormat.setOutputPath(conf, new Path(args[1]));</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>54.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>55.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>JobClient.runJob(conf);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>57.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>58.</td>
|
|
|
- <td>
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>59.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- </table>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Usage</title>
|
|
|
-
|
|
|
- <p>Assuming <code>HADOOP_HOME</code> is the root of the installation and
|
|
|
- <code>HADOOP_VERSION</code> is the Hadoop version installed, compile
|
|
|
- <code>WordCount.java</code> and create a jar:</p>
|
|
|
- <p>
|
|
|
- <code>$ mkdir wordcount_classes</code><br/>
|
|
|
- <code>
|
|
|
- $ javac -classpath ${HADOOP_HOME}/hadoop-${HADOOP_VERSION}-core.jar
|
|
|
- -d wordcount_classes WordCount.java
|
|
|
- </code><br/>
|
|
|
- <code>$ jar -cvf /usr/joe/wordcount.jar -C wordcount_classes/ .</code>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Assuming that:</p>
|
|
|
- <ul>
|
|
|
- <li>
|
|
|
- <code>/usr/joe/wordcount/input</code> - input directory in HDFS
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- <code>/usr/joe/wordcount/output</code> - output directory in HDFS
|
|
|
- </li>
|
|
|
- </ul>
|
|
|
-
|
|
|
- <p>Sample text-files as input:</p>
|
|
|
- <p>
|
|
|
- <code>$ bin/hadoop dfs -ls /usr/joe/wordcount/input/</code><br/>
|
|
|
- <code>/usr/joe/wordcount/input/file01</code><br/>
|
|
|
- <code>/usr/joe/wordcount/input/file02</code><br/>
|
|
|
- <br/>
|
|
|
- <code>$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01</code><br/>
|
|
|
- <code>Hello World Bye World</code><br/>
|
|
|
- <br/>
|
|
|
- <code>$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02</code><br/>
|
|
|
- <code>Hello Hadoop Goodbye Hadoop</code>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Run the application:</p>
|
|
|
- <p>
|
|
|
- <code>
|
|
|
- $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
|
|
|
- /usr/joe/wordcount/input /usr/joe/wordcount/output
|
|
|
- </code>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Output:</p>
|
|
|
- <p>
|
|
|
- <code>
|
|
|
- $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
|
|
|
- </code>
|
|
|
- <br/>
|
|
|
- <code>Bye 1</code><br/>
|
|
|
- <code>Goodbye 1</code><br/>
|
|
|
- <code>Hadoop 2</code><br/>
|
|
|
- <code>Hello 2</code><br/>
|
|
|
- <code>World 2</code><br/>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p> Applications can specify a comma separated list of paths which
|
|
|
- would be present in the current working directory of the task
|
|
|
- using the option <code>-files</code>. The <code>-libjars</code>
|
|
|
- option allows applications to add jars to the classpaths of the maps
|
|
|
- and reduces. The <code>-archives</code> allows them to pass archives
|
|
|
- as arguments that are unzipped/unjarred and a link with name of the
|
|
|
- jar/zip are created in the current working directory of tasks. More
|
|
|
- details about the command line options are available at
|
|
|
- <a href="commands_manual.html"> Hadoop Command Guide.</a></p>
|
|
|
-
|
|
|
- <p>Running <code>wordcount</code> example with
|
|
|
- <code>-libjars</code> and <code>-files</code>:<br/>
|
|
|
- <code> hadoop jar hadoop-examples.jar wordcount -files cachefile.txt
|
|
|
- -libjars mylib.jar input output </code>
|
|
|
- </p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Walk-through</title>
|
|
|
-
|
|
|
- <p>The <code>WordCount</code> application is quite straight-forward.</p>
|
|
|
-
|
|
|
- <p>The <code>Mapper</code> implementation (lines 14-26), via the
|
|
|
- <code>map</code> method (lines 18-25), processes one line at a time,
|
|
|
- as provided by the specified <code>TextInputFormat</code> (line 49).
|
|
|
- It then splits the line into tokens separated by whitespaces, via the
|
|
|
- <code>StringTokenizer</code>, and emits a key-value pair of
|
|
|
- <code>< <word>, 1></code>.</p>
|
|
|
-
|
|
|
- <p>
|
|
|
- For the given sample input the first map emits:<br/>
|
|
|
- <code>< Hello, 1></code><br/>
|
|
|
- <code>< World, 1></code><br/>
|
|
|
- <code>< Bye, 1></code><br/>
|
|
|
- <code>< World, 1></code><br/>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>
|
|
|
- The second map emits:<br/>
|
|
|
- <code>< Hello, 1></code><br/>
|
|
|
- <code>< Hadoop, 1></code><br/>
|
|
|
- <code>< Goodbye, 1></code><br/>
|
|
|
- <code>< Hadoop, 1></code><br/>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>We'll learn more about the number of maps spawned for a given job, and
|
|
|
- how to control them in a fine-grained manner, a bit later in the
|
|
|
- tutorial.</p>
|
|
|
-
|
|
|
- <p><code>WordCount</code> also specifies a <code>combiner</code> (line
|
|
|
- 46). Hence, the output of each map is passed through the local combiner
|
|
|
- (which is same as the <code>Reducer</code> as per the job
|
|
|
- configuration) for local aggregation, after being sorted on the
|
|
|
- <em>key</em>s.</p>
|
|
|
-
|
|
|
- <p>
|
|
|
- The output of the first map:<br/>
|
|
|
- <code>< Bye, 1></code><br/>
|
|
|
- <code>< Hello, 1></code><br/>
|
|
|
- <code>< World, 2></code><br/>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>
|
|
|
- The output of the second map:<br/>
|
|
|
- <code>< Goodbye, 1></code><br/>
|
|
|
- <code>< Hadoop, 2></code><br/>
|
|
|
- <code>< Hello, 1></code><br/>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>The <code>Reducer</code> implementation (lines 28-36), via the
|
|
|
- <code>reduce</code> method (lines 29-35) just sums up the values,
|
|
|
- which are the occurence counts for each key (i.e. words in this example).
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>
|
|
|
- Thus the output of the job is:<br/>
|
|
|
- <code>< Bye, 1></code><br/>
|
|
|
- <code>< Goodbye, 1></code><br/>
|
|
|
- <code>< Hadoop, 2></code><br/>
|
|
|
- <code>< Hello, 2></code><br/>
|
|
|
- <code>< World, 2></code><br/>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>The <code>run</code> method specifies various facets of the job, such
|
|
|
- as the input/output paths (passed via the command line), key/value
|
|
|
- types, input/output formats etc., in the <code>JobConf</code>.
|
|
|
- It then calls the <code>JobClient.runJob</code> (line 55) to submit the
|
|
|
- and monitor its progress.</p>
|
|
|
-
|
|
|
- <p>We'll learn more about <code>JobConf</code>, <code>JobClient</code>,
|
|
|
- <code>Tool</code> and other interfaces and classes a bit later in the
|
|
|
- tutorial.</p>
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Map/Reduce - User Interfaces</title>
|
|
|
-
|
|
|
- <p>This section provides a reasonable amount of detail on every user-facing
|
|
|
- aspect of the Map/Reduce framwork. This should help users implement,
|
|
|
- configure and tune their jobs in a fine-grained manner. However, please
|
|
|
- note that the javadoc for each class/interface remains the most
|
|
|
- comprehensive documentation available; this is only meant to be a tutorial.
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Let us first take the <code>Mapper</code> and <code>Reducer</code>
|
|
|
- interfaces. Applications typically implement them to provide the
|
|
|
- <code>map</code> and <code>reduce</code> methods.</p>
|
|
|
-
|
|
|
- <p>We will then discuss other core interfaces including
|
|
|
- <code>JobConf</code>, <code>JobClient</code>, <code>Partitioner</code>,
|
|
|
- <code>OutputCollector</code>, <code>Reporter</code>,
|
|
|
- <code>InputFormat</code>, <code>OutputFormat</code>,
|
|
|
- <code>OutputCommitter</code> and others.</p>
|
|
|
-
|
|
|
- <p>Finally, we will wrap up by discussing some useful features of the
|
|
|
- framework such as the <code>DistributedCache</code>,
|
|
|
- <code>IsolationRunner</code> etc.</p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Payload</title>
|
|
|
-
|
|
|
- <p>Applications typically implement the <code>Mapper</code> and
|
|
|
- <code>Reducer</code> interfaces to provide the <code>map</code> and
|
|
|
- <code>reduce</code> methods. These form the core of the job.</p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Mapper</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/mapper">
|
|
|
- Mapper</a> maps input key/value pairs to a set of intermediate
|
|
|
- key/value pairs.</p>
|
|
|
-
|
|
|
- <p>Maps are the individual tasks that transform input records into
|
|
|
- intermediate records. The transformed intermediate records do not need
|
|
|
- to be of the same type as the input records. A given input pair may
|
|
|
- map to zero or many output pairs.</p>
|
|
|
-
|
|
|
- <p>The Hadoop Map/Reduce framework spawns one map task for each
|
|
|
- <code>InputSplit</code> generated by the <code>InputFormat</code> for
|
|
|
- the job.</p>
|
|
|
-
|
|
|
- <p>Overall, <code>Mapper</code> implementations are passed the
|
|
|
- <code>JobConf</code> for the job via the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconfigurable/configure">
|
|
|
- JobConfigurable.configure(JobConf)</a> method and override it to
|
|
|
- initialize themselves. The framework then calls
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/mapper/map">
|
|
|
- map(WritableComparable, Writable, OutputCollector, Reporter)</a> for
|
|
|
- each key/value pair in the <code>InputSplit</code> for that task.
|
|
|
- Applications can then override the
|
|
|
- <a href="ext:api/org/apache/hadoop/io/closeable/close">
|
|
|
- Closeable.close()</a> method to perform any required cleanup.</p>
|
|
|
-
|
|
|
-
|
|
|
- <p>Output pairs do not need to be of the same types as input pairs. A
|
|
|
- given input pair may map to zero or many output pairs. Output pairs
|
|
|
- are collected with calls to
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/outputcollector/collect">
|
|
|
- OutputCollector.collect(WritableComparable,Writable)</a>.</p>
|
|
|
-
|
|
|
- <p>Applications can use the <code>Reporter</code> to report
|
|
|
- progress, set application-level status messages and update
|
|
|
- <code>Counters</code>, or just indicate that they are alive.</p>
|
|
|
-
|
|
|
- <p>All intermediate values associated with a given output key are
|
|
|
- subsequently grouped by the framework, and passed to the
|
|
|
- <code>Reducer</code>(s) to determine the final output. Users can
|
|
|
- control the grouping by specifying a <code>Comparator</code> via
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setoutputkeycomparatorclass">
|
|
|
- JobConf.setOutputKeyComparatorClass(Class)</a>.</p>
|
|
|
-
|
|
|
- <p>The <code>Mapper</code> outputs are sorted and then
|
|
|
- partitioned per <code>Reducer</code>. The total number of partitions is
|
|
|
- the same as the number of reduce tasks for the job. Users can control
|
|
|
- which keys (and hence records) go to which <code>Reducer</code> by
|
|
|
- implementing a custom <code>Partitioner</code>.</p>
|
|
|
-
|
|
|
- <p>Users can optionally specify a <code>combiner</code>, via
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setcombinerclass">
|
|
|
- JobConf.setCombinerClass(Class)</a>, to perform local aggregation of
|
|
|
- the intermediate outputs, which helps to cut down the amount of data
|
|
|
- transferred from the <code>Mapper</code> to the <code>Reducer</code>.
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>The intermediate, sorted outputs are always stored in a simple
|
|
|
- (key-len, key, value-len, value) format.
|
|
|
- Applications can control if, and how, the
|
|
|
- intermediate outputs are to be compressed and the
|
|
|
- <a href="ext:api/org/apache/hadoop/io/compress/compressioncodec">
|
|
|
- CompressionCodec</a> to be used via the <code>JobConf</code>.
|
|
|
- </p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>How Many Maps?</title>
|
|
|
-
|
|
|
- <p>The number of maps is usually driven by the total size of the
|
|
|
- inputs, that is, the total number of blocks of the input files.</p>
|
|
|
-
|
|
|
- <p>The right level of parallelism for maps seems to be around 10-100
|
|
|
- maps per-node, although it has been set up to 300 maps for very
|
|
|
- cpu-light map tasks. Task setup takes awhile, so it is best if the
|
|
|
- maps take at least a minute to execute.</p>
|
|
|
-
|
|
|
- <p>Thus, if you expect 10TB of input data and have a blocksize of
|
|
|
- <code>128MB</code>, you'll end up with 82,000 maps, unless
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setnummaptasks">
|
|
|
- setNumMapTasks(int)</a> (which only provides a hint to the framework)
|
|
|
- is used to set it even higher.</p>
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Reducer</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/reducer">
|
|
|
- Reducer</a> reduces a set of intermediate values which share a key to
|
|
|
- a smaller set of values.</p>
|
|
|
-
|
|
|
- <p>The number of reduces for the job is set by the user
|
|
|
- via <a href="ext:api/org/apache/hadoop/mapred/jobconf/setnumreducetasks">
|
|
|
- JobConf.setNumReduceTasks(int)</a>.</p>
|
|
|
-
|
|
|
- <p>Overall, <code>Reducer</code> implementations are passed the
|
|
|
- <code>JobConf</code> for the job via the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconfigurable/configure">
|
|
|
- JobConfigurable.configure(JobConf)</a> method and can override it to
|
|
|
- initialize themselves. The framework then calls
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/reducer/reduce">
|
|
|
- reduce(WritableComparable, Iterator, OutputCollector, Reporter)</a>
|
|
|
- method for each <code><key, (list of values)></code>
|
|
|
- pair in the grouped inputs. Applications can then override the
|
|
|
- <a href="ext:api/org/apache/hadoop/io/closeable/close">
|
|
|
- Closeable.close()</a> method to perform any required cleanup.</p>
|
|
|
-
|
|
|
- <p><code>Reducer</code> has 3 primary phases: shuffle, sort and reduce.
|
|
|
- </p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Shuffle</title>
|
|
|
-
|
|
|
- <p>Input to the <code>Reducer</code> is the sorted output of the
|
|
|
- mappers. In this phase the framework fetches the relevant partition
|
|
|
- of the output of all the mappers, via HTTP.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Sort</title>
|
|
|
-
|
|
|
- <p>The framework groups <code>Reducer</code> inputs by keys (since
|
|
|
- different mappers may have output the same key) in this stage.</p>
|
|
|
-
|
|
|
- <p>The shuffle and sort phases occur simultaneously; while
|
|
|
- map-outputs are being fetched they are merged.</p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Secondary Sort</title>
|
|
|
-
|
|
|
- <p>If equivalence rules for grouping the intermediate keys are
|
|
|
- required to be different from those for grouping keys before
|
|
|
- reduction, then one may specify a <code>Comparator</code> via
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setoutputvaluegroupingcomparator">
|
|
|
- JobConf.setOutputValueGroupingComparator(Class)</a>. Since
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setoutputkeycomparatorclass">
|
|
|
- JobConf.setOutputKeyComparatorClass(Class)</a> can be used to
|
|
|
- control how intermediate keys are grouped, these can be used in
|
|
|
- conjunction to simulate <em>secondary sort on values</em>.</p>
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Reduce</title>
|
|
|
-
|
|
|
- <p>In this phase the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/reducer/reduce">
|
|
|
- reduce(WritableComparable, Iterator, OutputCollector, Reporter)</a>
|
|
|
- method is called for each <code><key, (list of values)></code>
|
|
|
- pair in the grouped inputs.</p>
|
|
|
-
|
|
|
- <p>The output of the reduce task is typically written to the
|
|
|
- <a href="ext:api/org/apache/hadoop/fs/filesystem">
|
|
|
- FileSystem</a> via
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/outputcollector/collect">
|
|
|
- OutputCollector.collect(WritableComparable, Writable)</a>.</p>
|
|
|
-
|
|
|
- <p>Applications can use the <code>Reporter</code> to report
|
|
|
- progress, set application-level status messages and update
|
|
|
- <code>Counters</code>, or just indicate that they are alive.</p>
|
|
|
-
|
|
|
- <p>The output of the <code>Reducer</code> is <em>not sorted</em>.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>How Many Reduces?</title>
|
|
|
-
|
|
|
- <p>The right number of reduces seems to be <code>0.95</code> or
|
|
|
- <code>1.75</code> multiplied by (<<em>no. of nodes</em>> *
|
|
|
- <code>mapred.tasktracker.reduce.tasks.maximum</code>).</p>
|
|
|
-
|
|
|
- <p>With <code>0.95</code> all of the reduces can launch immediately
|
|
|
- and start transfering map outputs as the maps finish. With
|
|
|
- <code>1.75</code> the faster nodes will finish their first round of
|
|
|
- reduces and launch a second wave of reduces doing a much better job
|
|
|
- of load balancing.</p>
|
|
|
-
|
|
|
- <p>Increasing the number of reduces increases the framework overhead,
|
|
|
- but increases load balancing and lowers the cost of failures.</p>
|
|
|
-
|
|
|
- <p>The scaling factors above are slightly less than whole numbers to
|
|
|
- reserve a few reduce slots in the framework for speculative-tasks and
|
|
|
- failed tasks.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Reducer NONE</title>
|
|
|
-
|
|
|
- <p>It is legal to set the number of reduce-tasks to <em>zero</em> if
|
|
|
- no reduction is desired.</p>
|
|
|
-
|
|
|
- <p>In this case the outputs of the map-tasks go directly to the
|
|
|
- <code>FileSystem</code>, into the output path set by
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/fileoutputformat/setoutputpath">
|
|
|
- setOutputPath(Path)</a>. The framework does not sort the
|
|
|
- map-outputs before writing them out to the <code>FileSystem</code>.
|
|
|
- </p>
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Partitioner</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/partitioner">
|
|
|
- Partitioner</a> partitions the key space.</p>
|
|
|
-
|
|
|
- <p>Partitioner controls the partitioning of the keys of the
|
|
|
- intermediate map-outputs. The key (or a subset of the key) is used to
|
|
|
- derive the partition, typically by a <em>hash function</em>. The total
|
|
|
- number of partitions is the same as the number of reduce tasks for the
|
|
|
- job. Hence this controls which of the <code>m</code> reduce tasks the
|
|
|
- intermediate key (and hence the record) is sent to for reduction.</p>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/lib/hashpartitioner">
|
|
|
- HashPartitioner</a> is the default <code>Partitioner</code>.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Reporter</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/reporter">
|
|
|
- Reporter</a> is a facility for Map/Reduce applications to report
|
|
|
- progress, set application-level status messages and update
|
|
|
- <code>Counters</code>.</p>
|
|
|
-
|
|
|
- <p><code>Mapper</code> and <code>Reducer</code> implementations can use
|
|
|
- the <code>Reporter</code> to report progress or just indicate
|
|
|
- that they are alive. In scenarios where the application takes a
|
|
|
- significant amount of time to process individual key/value pairs,
|
|
|
- this is crucial since the framework might assume that the task has
|
|
|
- timed-out and kill that task. Another way to avoid this is to
|
|
|
- set the configuration parameter <code>mapred.task.timeout</code> to a
|
|
|
- high-enough value (or even set it to <em>zero</em> for no time-outs).
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Applications can also update <code>Counters</code> using the
|
|
|
- <code>Reporter</code>.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>OutputCollector</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/outputcollector">
|
|
|
- OutputCollector</a> is a generalization of the facility provided by
|
|
|
- the Map/Reduce framework to collect data output by the
|
|
|
- <code>Mapper</code> or the <code>Reducer</code> (either the
|
|
|
- intermediate outputs or the output of the job).</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <p>Hadoop Map/Reduce comes bundled with a
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/lib/package-summary">
|
|
|
- library</a> of generally useful mappers, reducers, and partitioners.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Job Configuration</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/jobconf">
|
|
|
- JobConf</a> represents a Map/Reduce job configuration.</p>
|
|
|
-
|
|
|
- <p><code>JobConf</code> is the primary interface for a user to describe
|
|
|
- a Map/Reduce job to the Hadoop framework for execution. The framework
|
|
|
- tries to faithfully execute the job as described by <code>JobConf</code>,
|
|
|
- however:</p>
|
|
|
- <ul>
|
|
|
- <li>f
|
|
|
- Some configuration parameters may have been marked as
|
|
|
- <a href="ext:api/org/apache/hadoop/conf/configuration/final_parameters">
|
|
|
- final</a> by administrators and hence cannot be altered.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- While some job parameters are straight-forward to set (e.g.
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setnumreducetasks">
|
|
|
- setNumReduceTasks(int)</a>), other parameters interact subtly with
|
|
|
- the rest of the framework and/or job configuration and are
|
|
|
- more complex to set (e.g.
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setnummaptasks">
|
|
|
- setNumMapTasks(int)</a>).
|
|
|
- </li>
|
|
|
- </ul>
|
|
|
-
|
|
|
- <p><code>JobConf</code> is typically used to specify the
|
|
|
- <code>Mapper</code>, combiner (if any), <code>Partitioner</code>,
|
|
|
- <code>Reducer</code>, <code>InputFormat</code>,
|
|
|
- <code>OutputFormat</code> and <code>OutputCommitter</code>
|
|
|
- implementations. <code>JobConf</code> also
|
|
|
- indicates the set of input files
|
|
|
- (<a href="ext:api/org/apache/hadoop/mapred/fileinputformat/setinputpaths">setInputPaths(JobConf, Path...)</a>
|
|
|
- /<a href="ext:api/org/apache/hadoop/mapred/fileinputformat/addinputpath">addInputPath(JobConf, Path)</a>)
|
|
|
- and (<a href="ext:api/org/apache/hadoop/mapred/fileinputformat/setinputpathstring">setInputPaths(JobConf, String)</a>
|
|
|
- /<a href="ext:api/org/apache/hadoop/mapred/fileinputformat/addinputpathstring">addInputPaths(JobConf, String)</a>)
|
|
|
- and where the output files should be written
|
|
|
- (<a href="ext:api/org/apache/hadoop/mapred/fileoutputformat/setoutputpath">setOutputPath(Path)</a>).</p>
|
|
|
-
|
|
|
- <p>Optionally, <code>JobConf</code> is used to specify other advanced
|
|
|
- facets of the job such as the <code>Comparator</code> to be used, files
|
|
|
- to be put in the <code>DistributedCache</code>, whether intermediate
|
|
|
- and/or job outputs are to be compressed (and how), debugging via
|
|
|
- user-provided scripts
|
|
|
- (<a href="ext:api/org/apache/hadoop/mapred/jobconf/setmapdebugscript">setMapDebugScript(String)</a>/<a href="ext:api/org/apache/hadoop/mapred/jobconf/setreducedebugscript">setReduceDebugScript(String)</a>)
|
|
|
- , whether job tasks can be executed in a <em>speculative</em> manner
|
|
|
- (<a href="ext:api/org/apache/hadoop/mapred/jobconf/setmapspeculativeexecution">setMapSpeculativeExecution(boolean)</a>)/(<a href="ext:api/org/apache/hadoop/mapred/jobconf/setreducespeculativeexecution">setReduceSpeculativeExecution(boolean)</a>)
|
|
|
- , maximum number of attempts per task
|
|
|
- (<a href="ext:api/org/apache/hadoop/mapred/jobconf/setmaxmapattempts">setMaxMapAttempts(int)</a>/<a href="ext:api/org/apache/hadoop/mapred/jobconf/setmaxreduceattempts">setMaxReduceAttempts(int)</a>)
|
|
|
- , percentage of tasks failure which can be tolerated by the job
|
|
|
- (<a href="ext:api/org/apache/hadoop/mapred/jobconf/setmaxmaptaskfailurespercent">setMaxMapTaskFailuresPercent(int)</a>/<a href="ext:api/org/apache/hadoop/mapred/jobconf/setmaxreducetaskfailurespercent">setMaxReduceTaskFailuresPercent(int)</a>)
|
|
|
- etc.</p>
|
|
|
-
|
|
|
- <p>Of course, users can use
|
|
|
- <a href="ext:api/org/apache/hadoop/conf/configuration/set">set(String, String)</a>/<a href="ext:api/org/apache/hadoop/conf/configuration/get">get(String, String)</a>
|
|
|
- to set/get arbitrary parameters needed by applications. However, use the
|
|
|
- <code>DistributedCache</code> for large amounts of (read-only) data.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Task Execution & Environment</title>
|
|
|
-
|
|
|
- <p>The <code>TaskTracker</code> executes the <code>Mapper</code>/
|
|
|
- <code>Reducer</code> <em>task</em> as a child process in a separate jvm.
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>The child-task inherits the environment of the parent
|
|
|
- <code>TaskTracker</code>. The user can specify additional options to the
|
|
|
- child-jvm via the <code>mapred.child.java.opts</code> configuration
|
|
|
- parameter in the <code>JobConf</code> such as non-standard paths for the
|
|
|
- run-time linker to search shared libraries via
|
|
|
- <code>-Djava.library.path=<></code> etc. If the
|
|
|
- <code>mapred.child.java.opts</code> contains the symbol <em>@taskid@</em>
|
|
|
- it is interpolated with value of <code>taskid</code> of the map/reduce
|
|
|
- task.</p>
|
|
|
-
|
|
|
- <p>Here is an example with multiple arguments and substitutions,
|
|
|
- showing jvm GC logging, and start of a passwordless JVM JMX agent so that
|
|
|
- it can connect with jconsole and the likes to watch child memory,
|
|
|
- threads and get thread dumps. It also sets the maximum heap-size of the
|
|
|
- child jvm to 512MB and adds an additional path to the
|
|
|
- <code>java.library.path</code> of the child-jvm.</p>
|
|
|
-
|
|
|
- <p>
|
|
|
- <code><property></code><br/>
|
|
|
- <code><name>mapred.child.java.opts</name></code><br/>
|
|
|
- <code><value></code><br/>
|
|
|
- <code>
|
|
|
- -Xmx512M -Djava.library.path=/home/mycompany/lib
|
|
|
- -verbose:gc -Xloggc:/tmp/@taskid@.gc</code><br/>
|
|
|
- <code>
|
|
|
- -Dcom.sun.management.jmxremote.authenticate=false
|
|
|
- -Dcom.sun.management.jmxremote.ssl=false</code><br/>
|
|
|
- <code></value></code><br/>
|
|
|
- <code></property></code>
|
|
|
- </p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title> Memory management</title>
|
|
|
- <p>Users/admins can also specify the maximum virtual memory
|
|
|
- of the launched child-task, and any sub-process it launches
|
|
|
- recursively, using <code>mapred.child.ulimit</code>. Note that
|
|
|
- the value set here is a per process limit.
|
|
|
- The value for <code>mapred.child.ulimit</code> should be specified
|
|
|
- in kilo bytes (KB). And also the value must be greater than
|
|
|
- or equal to the -Xmx passed to JavaVM, else the VM might not start.
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Note: <code>mapred.child.java.opts</code> are used only for
|
|
|
- configuring the launched child tasks from task tracker. Configuring
|
|
|
- the memory options for daemons is documented in
|
|
|
- <a href="cluster_setup.html#Configuring+the+Environment+of+the+Hadoop+Daemons">
|
|
|
- cluster_setup.html </a></p>
|
|
|
-
|
|
|
- <p>The memory available to some parts of the framework is also
|
|
|
- configurable. In map and reduce tasks, performance may be influenced
|
|
|
- by adjusting parameters influencing the concurrency of operations and
|
|
|
- the frequency with which data will hit disk. Monitoring the filesystem
|
|
|
- counters for a job- particularly relative to byte counts from the map
|
|
|
- and into the reduce- is invaluable to the tuning of these
|
|
|
- parameters.</p>
|
|
|
-
|
|
|
- <p>Users can choose to override default limits of Virtual Memory and RAM
|
|
|
- enforced by the task tracker, if memory management is enabled.
|
|
|
- Users can set the following parameter per job:</p>
|
|
|
-
|
|
|
- <table>
|
|
|
- <tr><th>Name</th><th>Type</th><th>Description</th></tr>
|
|
|
- <tr><td><code>mapred.task.maxvmem</code></td><td>int</td>
|
|
|
- <td>A number, in bytes, that represents the maximum Virtual Memory
|
|
|
- task-limit for each task of the job. A task will be killed if
|
|
|
- it consumes more Virtual Memory than this number.
|
|
|
- </td></tr>
|
|
|
- <tr><td>mapred.task.maxpmem</td><td>int</td>
|
|
|
- <td>A number, in bytes, that represents the maximum RAM task-limit
|
|
|
- for each task of the job. This number can be optionally used by
|
|
|
- Schedulers to prevent over-scheduling of tasks on a node based
|
|
|
- on RAM needs.
|
|
|
- </td></tr>
|
|
|
- </table>
|
|
|
- </section>
|
|
|
- <section>
|
|
|
- <title>Map Parameters</title>
|
|
|
-
|
|
|
- <p>A record emitted from a map will be serialized into a buffer and
|
|
|
- metadata will be stored into accounting buffers. As described in the
|
|
|
- following options, when either the serialization buffer or the
|
|
|
- metadata exceed a threshold, the contents of the buffers will be
|
|
|
- sorted and written to disk in the background while the map continues
|
|
|
- to output records. If either buffer fills completely while the spill
|
|
|
- is in progress, the map thread will block. When the map is finished,
|
|
|
- any remaining records are written to disk and all on-disk segments
|
|
|
- are merged into a single file. Minimizing the number of spills to
|
|
|
- disk can decrease map time, but a larger buffer also decreases the
|
|
|
- memory available to the mapper.</p>
|
|
|
-
|
|
|
- <table>
|
|
|
- <tr><th>Name</th><th>Type</th><th>Description</th></tr>
|
|
|
- <tr><td>io.sort.mb</td><td>int</td>
|
|
|
- <td>The cumulative size of the serialization and accounting
|
|
|
- buffers storing records emitted from the map, in megabytes.
|
|
|
- </td></tr>
|
|
|
- <tr><td>io.sort.record.percent</td><td>float</td>
|
|
|
- <td>The ratio of serialization to accounting space can be
|
|
|
- adjusted. Each serialized record requires 16 bytes of
|
|
|
- accounting information in addition to its serialized size to
|
|
|
- effect the sort. This percentage of space allocated from
|
|
|
- <code>io.sort.mb</code> affects the probability of a spill to
|
|
|
- disk being caused by either exhaustion of the serialization
|
|
|
- buffer or the accounting space. Clearly, for a map outputting
|
|
|
- small records, a higher value than the default will likely
|
|
|
- decrease the number of spills to disk.</td></tr>
|
|
|
- <tr><td>io.sort.spill.percent</td><td>float</td>
|
|
|
- <td>This is the threshold for the accounting and serialization
|
|
|
- buffers. When this percentage of either buffer has filled,
|
|
|
- their contents will be spilled to disk in the background. Let
|
|
|
- <code>io.sort.record.percent</code> be <em>r</em>,
|
|
|
- <code>io.sort.mb</code> be <em>x</em>, and this value be
|
|
|
- <em>q</em>. The maximum number of records collected before the
|
|
|
- collection thread will spill is <code>r * x * q * 2^16</code>.
|
|
|
- Note that a higher value may decrease the number of- or even
|
|
|
- eliminate- merges, but will also increase the probability of
|
|
|
- the map task getting blocked. The lowest average map times are
|
|
|
- usually obtained by accurately estimating the size of the map
|
|
|
- output and preventing multiple spills.</td></tr>
|
|
|
- </table>
|
|
|
-
|
|
|
- <p>Other notes</p>
|
|
|
- <ul>
|
|
|
- <li>If either spill threshold is exceeded while a spill is in
|
|
|
- progress, collection will continue until the spill is finished.
|
|
|
- For example, if <code>io.sort.buffer.spill.percent</code> is set
|
|
|
- to 0.33, and the remainder of the buffer is filled while the spill
|
|
|
- runs, the next spill will include all the collected records, or
|
|
|
- 0.66 of the buffer, and will not generate additional spills. In
|
|
|
- other words, the thresholds are defining triggers, not
|
|
|
- blocking.</li>
|
|
|
- <li>A record larger than the serialization buffer will first
|
|
|
- trigger a spill, then be spilled to a separate file. It is
|
|
|
- undefined whether or not this record will first pass through the
|
|
|
- combiner.</li>
|
|
|
- </ul>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Shuffle/Reduce Parameters</title>
|
|
|
-
|
|
|
- <p>As described previously, each reduce fetches the output assigned
|
|
|
- to it by the Partitioner via HTTP into memory and periodically
|
|
|
- merges these outputs to disk. If intermediate compression of map
|
|
|
- outputs is turned on, each output is decompressed into memory. The
|
|
|
- following options affect the frequency of these merges to disk prior
|
|
|
- to the reduce and the memory allocated to map output during the
|
|
|
- reduce.</p>
|
|
|
-
|
|
|
- <table>
|
|
|
- <tr><th>Name</th><th>Type</th><th>Description</th></tr>
|
|
|
- <tr><td>io.sort.factor</td><td>int</td>
|
|
|
- <td>Specifies the number of segments on disk to be merged at
|
|
|
- the same time. It limits the number of open files and
|
|
|
- compression codecs during the merge. If the number of files
|
|
|
- exceeds this limit, the merge will proceed in several passes.
|
|
|
- Though this limit also applies to the map, most jobs should be
|
|
|
- configured so that hitting this limit is unlikely
|
|
|
- there.</td></tr>
|
|
|
- <tr><td>mapred.inmem.merge.threshold</td><td>int</td>
|
|
|
- <td>The number of sorted map outputs fetched into memory
|
|
|
- before being merged to disk. Like the spill thresholds in the
|
|
|
- preceding note, this is not defining a unit of partition, but
|
|
|
- a trigger. In practice, this is usually set very high (1000)
|
|
|
- or disabled (0), since merging in-memory segments is often
|
|
|
- less expensive than merging from disk (see notes following
|
|
|
- this table). This threshold influences only the frequency of
|
|
|
- in-memory merges during the shuffle.</td></tr>
|
|
|
- <tr><td>mapred.job.shuffle.merge.percent</td><td>float</td>
|
|
|
- <td>The memory threshold for fetched map outputs before an
|
|
|
- in-memory merge is started, expressed as a percentage of
|
|
|
- memory allocated to storing map outputs in memory. Since map
|
|
|
- outputs that can't fit in memory can be stalled, setting this
|
|
|
- high may decrease parallelism between the fetch and merge.
|
|
|
- Conversely, values as high as 1.0 have been effective for
|
|
|
- reduces whose input can fit entirely in memory. This parameter
|
|
|
- influences only the frequency of in-memory merges during the
|
|
|
- shuffle.</td></tr>
|
|
|
- <tr><td>mapred.job.shuffle.input.buffer.percent</td><td>float</td>
|
|
|
- <td>The percentage of memory- relative to the maximum heapsize
|
|
|
- as typically specified in <code>mapred.child.java.opts</code>-
|
|
|
- that can be allocated to storing map outputs during the
|
|
|
- shuffle. Though some memory should be set aside for the
|
|
|
- framework, in general it is advantageous to set this high
|
|
|
- enough to store large and numerous map outputs.</td></tr>
|
|
|
- <tr><td>mapred.job.reduce.input.buffer.percent</td><td>float</td>
|
|
|
- <td>The percentage of memory relative to the maximum heapsize
|
|
|
- in which map outputs may be retained during the reduce. When
|
|
|
- the reduce begins, map outputs will be merged to disk until
|
|
|
- those that remain are under the resource limit this defines.
|
|
|
- By default, all map outputs are merged to disk before the
|
|
|
- reduce begins to maximize the memory available to the reduce.
|
|
|
- For less memory-intensive reduces, this should be increased to
|
|
|
- avoid trips to disk.</td></tr>
|
|
|
- </table>
|
|
|
-
|
|
|
- <p>Other notes</p>
|
|
|
- <ul>
|
|
|
- <li>If a map output is larger than 25 percent of the memory
|
|
|
- allocated to copying map outputs, it will be written directly to
|
|
|
- disk without first staging through memory.</li>
|
|
|
- <li>When running with a combiner, the reasoning about high merge
|
|
|
- thresholds and large buffers may not hold. For merges started
|
|
|
- before all map outputs have been fetched, the combiner is run
|
|
|
- while spilling to disk. In some cases, one can obtain better
|
|
|
- reduce times by spending resources combining map outputs- making
|
|
|
- disk spills small and parallelizing spilling and fetching- rather
|
|
|
- than aggressively increasing buffer sizes.</li>
|
|
|
- <li>When merging in-memory map outputs to disk to begin the
|
|
|
- reduce, if an intermediate merge is necessary because there are
|
|
|
- segments to spill and at least <code>io.sort.factor</code>
|
|
|
- segments already on disk, the in-memory map outputs will be part
|
|
|
- of the intermediate merge.</li>
|
|
|
- </ul>
|
|
|
-
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title> Directory Structure </title>
|
|
|
- <p>The task tracker has local directory,
|
|
|
- <code> ${mapred.local.dir}/taskTracker/</code> to create localized
|
|
|
- cache and localized job. It can define multiple local directories
|
|
|
- (spanning multiple disks) and then each filename is assigned to a
|
|
|
- semi-random local directory. When the job starts, task tracker
|
|
|
- creates a localized job directory relative to the local directory
|
|
|
- specified in the configuration. Thus the task tracker directory
|
|
|
- structure looks the following: </p>
|
|
|
- <ul>
|
|
|
- <li><code>${mapred.local.dir}/taskTracker/archive/</code> :
|
|
|
- The distributed cache. This directory holds the localized distributed
|
|
|
- cache. Thus localized distributed cache is shared among all
|
|
|
- the tasks and jobs </li>
|
|
|
- <li><code>${mapred.local.dir}/taskTracker/jobcache/$jobid/</code> :
|
|
|
- The localized job directory
|
|
|
- <ul>
|
|
|
- <li><code>${mapred.local.dir}/taskTracker/jobcache/$jobid/work/</code>
|
|
|
- : The job-specific shared directory. The tasks can use this space as
|
|
|
- scratch space and share files among them. This directory is exposed
|
|
|
- to the users through the configuration property
|
|
|
- <code>job.local.dir</code>. The directory can accessed through
|
|
|
- api <a href="ext:api/org/apache/hadoop/mapred/jobconf/getjoblocaldir">
|
|
|
- JobConf.getJobLocalDir()</a>. It is available as System property also.
|
|
|
- So, users (streaming etc.) can call
|
|
|
- <code>System.getProperty("job.local.dir")</code> to access the
|
|
|
- directory.</li>
|
|
|
- <li><code>${mapred.local.dir}/taskTracker/jobcache/$jobid/jars/</code>
|
|
|
- : The jars directory, which has the job jar file and expanded jar.
|
|
|
- The <code>job.jar</code> is the application's jar file that is
|
|
|
- automatically distributed to each machine. It is expanded in jars
|
|
|
- directory before the tasks for the job start. The job.jar location
|
|
|
- is accessible to the application through the api
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/getjar">
|
|
|
- JobConf.getJar() </a>. To access the unjarred directory,
|
|
|
- JobConf.getJar().getParent() can be called.</li>
|
|
|
- <li><code>${mapred.local.dir}/taskTracker/jobcache/$jobid/job.xml</code>
|
|
|
- : The job.xml file, the generic job configuration, localized for
|
|
|
- the job. </li>
|
|
|
- <li><code>${mapred.local.dir}/taskTracker/jobcache/$jobid/$taskid</code>
|
|
|
- : The task directory for each task attempt. Each task directory
|
|
|
- again has the following structure :
|
|
|
- <ul>
|
|
|
- <li><code>${mapred.local.dir}/taskTracker/jobcache/$jobid/$taskid/job.xml</code>
|
|
|
- : A job.xml file, task localized job configuration, Task localization
|
|
|
- means that properties have been set that are specific to
|
|
|
- this particular task within the job. The properties localized for
|
|
|
- each task are described below.</li>
|
|
|
- <li><code>${mapred.local.dir}/taskTracker/jobcache/$jobid/$taskid/output</code>
|
|
|
- : A directory for intermediate output files. This contains the
|
|
|
- temporary map reduce data generated by the framework
|
|
|
- such as map output files etc. </li>
|
|
|
- <li><code>${mapred.local.dir}/taskTracker/jobcache/$jobid/$taskid/work</code>
|
|
|
- : The curernt working directory of the task.
|
|
|
- With <a href="#Task+JVM+Reuse">jvm reuse</a> enabled for tasks, this
|
|
|
- directory will be the directory on which the jvm has started</li>
|
|
|
- <li><code>${mapred.local.dir}/taskTracker/jobcache/$jobid/$taskid/work/tmp</code>
|
|
|
- : The temporary directory for the task.
|
|
|
- (User can specify the property <code>mapred.child.tmp</code> to set
|
|
|
- the value of temporary directory for map and reduce tasks. This
|
|
|
- defaults to <code>./tmp</code>. If the value is not an absolute path,
|
|
|
- it is prepended with task's working directory. Otherwise, it is
|
|
|
- directly assigned. The directory will be created if it doesn't exist.
|
|
|
- Then, the child java tasks are executed with option
|
|
|
- <code>-Djava.io.tmpdir='the absolute path of the tmp dir'</code>.
|
|
|
- Anp pipes and streaming are set with environment variable,
|
|
|
- <code>TMPDIR='the absolute path of the tmp dir'</code>). This
|
|
|
- directory is created, if <code>mapred.child.tmp</code> has the value
|
|
|
- <code>./tmp</code> </li>
|
|
|
- </ul>
|
|
|
- </li>
|
|
|
- </ul>
|
|
|
- </li>
|
|
|
- </ul>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Task JVM Reuse</title>
|
|
|
- <p>Jobs can enable task JVMs to be reused by specifying the job
|
|
|
- configuration <code>mapred.job.reuse.jvm.num.tasks</code>. If the
|
|
|
- value is 1 (the default), then JVMs are not reused
|
|
|
- (i.e. 1 task per JVM). If it is -1, there is no limit to the number
|
|
|
- of tasks a JVM can run (of the same job). One can also specify some
|
|
|
- value greater than 1 using the api
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setnumtaskstoexecuteperjvm">
|
|
|
- JobConf.setNumTasksToExecutePerJvm(int)</a></p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <p>The following properties are localized in the job configuration
|
|
|
- for each task's execution: </p>
|
|
|
- <table>
|
|
|
- <tr><th>Name</th><th>Type</th><th>Description</th></tr>
|
|
|
- <tr><td>mapred.job.id</td><td>String</td><td>The job id</td></tr>
|
|
|
- <tr><td>mapred.jar</td><td>String</td>
|
|
|
- <td>job.jar location in job directory</td></tr>
|
|
|
- <tr><td>job.local.dir</td><td> String</td>
|
|
|
- <td> The job specific shared scratch space</td></tr>
|
|
|
- <tr><td>mapred.tip.id</td><td> String</td>
|
|
|
- <td> The task id</td></tr>
|
|
|
- <tr><td>mapred.task.id</td><td> String</td>
|
|
|
- <td> The task attempt id</td></tr>
|
|
|
- <tr><td>mapred.task.is.map</td><td> boolean </td>
|
|
|
- <td>Is this a map task</td></tr>
|
|
|
- <tr><td>mapred.task.partition</td><td> int </td>
|
|
|
- <td>The id of the task within the job</td></tr>
|
|
|
- <tr><td>map.input.file</td><td> String</td>
|
|
|
- <td> The filename that the map is reading from</td></tr>
|
|
|
- <tr><td>map.input.start</td><td> long</td>
|
|
|
- <td> The offset of the start of the map input split</td></tr>
|
|
|
- <tr><td>map.input.length </td><td>long </td>
|
|
|
- <td>The number of bytes in the map input split</td></tr>
|
|
|
- <tr><td>mapred.work.output.dir</td><td> String </td>
|
|
|
- <td>The task's temporary output directory</td></tr>
|
|
|
- </table>
|
|
|
-
|
|
|
- <p>The standard output (stdout) and error (stderr) streams of the task
|
|
|
- are read by the TaskTracker and logged to
|
|
|
- <code>${HADOOP_LOG_DIR}/userlogs</code></p>
|
|
|
-
|
|
|
- <p>The <a href="#DistributedCache">DistributedCache</a> can also be used
|
|
|
- to distribute both jars and native libraries for use in the map
|
|
|
- and/or reduce tasks. The child-jvm always has its
|
|
|
- <em>current working directory</em> added to the
|
|
|
- <code>java.library.path</code> and <code>LD_LIBRARY_PATH</code>.
|
|
|
- And hence the cached libraries can be loaded via
|
|
|
- <a href="http://java.sun.com/javase/6/docs/api/java/lang/System.html#loadLibrary(java.lang.String)">
|
|
|
- System.loadLibrary</a> or
|
|
|
- <a href="http://java.sun.com/javase/6/docs/api/java/lang/System.html#load(java.lang.String)">
|
|
|
- System.load</a>. More details on how to load shared libraries through
|
|
|
- distributed cache are documented at
|
|
|
- <a href="native_libraries.html#Loading+native+libraries+through+DistributedCache">
|
|
|
- native_libraries.html</a></p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Job Submission and Monitoring</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/jobclient">
|
|
|
- JobClient</a> is the primary interface by which user-job interacts
|
|
|
- with the <code>JobTracker</code>.</p>
|
|
|
-
|
|
|
- <p><code>JobClient</code> provides facilities to submit jobs, track their
|
|
|
- progress, access component-tasks' reports and logs, get the Map/Reduce
|
|
|
- cluster's status information and so on.</p>
|
|
|
-
|
|
|
- <p>The job submission process involves:</p>
|
|
|
- <ol>
|
|
|
- <li>Checking the input and output specifications of the job.</li>
|
|
|
- <li>Computing the <code>InputSplit</code> values for the job.</li>
|
|
|
- <li>
|
|
|
- Setting up the requisite accounting information for the
|
|
|
- <code>DistributedCache</code> of the job, if necessary.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Copying the job's jar and configuration to the Map/Reduce system
|
|
|
- directory on the <code>FileSystem</code>.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Submitting the job to the <code>JobTracker</code> and optionally
|
|
|
- monitoring it's status.
|
|
|
- </li>
|
|
|
- </ol>
|
|
|
- <p> Job history files are also logged to user specified directory
|
|
|
- <code>hadoop.job.history.user.location</code>
|
|
|
- which defaults to job output directory. The files are stored in
|
|
|
- "_logs/history/" in the specified directory. Hence, by default they
|
|
|
- will be in mapred.output.dir/_logs/history. User can stop
|
|
|
- logging by giving the value <code>none</code> for
|
|
|
- <code>hadoop.job.history.user.location</code></p>
|
|
|
-
|
|
|
- <p> User can view the history logs summary in specified directory
|
|
|
- using the following command <br/>
|
|
|
- <code>$ bin/hadoop job -history output-dir</code><br/>
|
|
|
- This command will print job details, failed and killed tip
|
|
|
- details. <br/>
|
|
|
- More details about the job such as successful tasks and
|
|
|
- task attempts made for each task can be viewed using the
|
|
|
- following command <br/>
|
|
|
- <code>$ bin/hadoop job -history all output-dir</code><br/></p>
|
|
|
-
|
|
|
- <p> User can use
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/outputlogfilter">OutputLogFilter</a>
|
|
|
- to filter log files from the output directory listing. </p>
|
|
|
-
|
|
|
- <p>Normally the user creates the application, describes various facets
|
|
|
- of the job via <code>JobConf</code>, and then uses the
|
|
|
- <code>JobClient</code> to submit the job and monitor its progress.</p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Job Control</title>
|
|
|
-
|
|
|
- <p>Users may need to chain Map/Reduce jobs to accomplish complex
|
|
|
- tasks which cannot be done via a single Map/Reduce job. This is fairly
|
|
|
- easy since the output of the job typically goes to distributed
|
|
|
- file-system, and the output, in turn, can be used as the input for the
|
|
|
- next job.</p>
|
|
|
-
|
|
|
- <p>However, this also means that the onus on ensuring jobs are
|
|
|
- complete (success/failure) lies squarely on the clients. In such
|
|
|
- cases, the various job-control options are:</p>
|
|
|
- <ul>
|
|
|
- <li>
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobclient/runjob">
|
|
|
- runJob(JobConf)</a> : Submits the job and returns only after the
|
|
|
- job has completed.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobclient/submitjob">
|
|
|
- submitJob(JobConf)</a> : Only submits the job, then poll the
|
|
|
- returned handle to the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/runningjob">
|
|
|
- RunningJob</a> to query status and make scheduling decisions.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setjobendnotificationuri">
|
|
|
- JobConf.setJobEndNotificationURI(String)</a> : Sets up a
|
|
|
- notification upon job-completion, thus avoiding polling.
|
|
|
- </li>
|
|
|
- </ul>
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Job Input</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/inputformat">
|
|
|
- InputFormat</a> describes the input-specification for a Map/Reduce job.
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>The Map/Reduce framework relies on the <code>InputFormat</code> of
|
|
|
- the job to:</p>
|
|
|
- <ol>
|
|
|
- <li>Validate the input-specification of the job.</li>
|
|
|
- <li>
|
|
|
- Split-up the input file(s) into logical <code>InputSplit</code>
|
|
|
- instances, each of which is then assigned to an individual
|
|
|
- <code>Mapper</code>.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Provide the <code>RecordReader</code> implementation used to
|
|
|
- glean input records from the logical <code>InputSplit</code> for
|
|
|
- processing by the <code>Mapper</code>.
|
|
|
- </li>
|
|
|
- </ol>
|
|
|
-
|
|
|
- <p>The default behavior of file-based <code>InputFormat</code>
|
|
|
- implementations, typically sub-classes of
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/fileinputformat">
|
|
|
- FileInputFormat</a>, is to split the input into <em>logical</em>
|
|
|
- <code>InputSplit</code> instances based on the total size, in bytes, of
|
|
|
- the input files. However, the <code>FileSystem</code> blocksize of the
|
|
|
- input files is treated as an upper bound for input splits. A lower bound
|
|
|
- on the split size can be set via <code>mapred.min.split.size</code>.</p>
|
|
|
-
|
|
|
- <p>Clearly, logical splits based on input-size is insufficient for many
|
|
|
- applications since record boundaries must be respected. In such cases,
|
|
|
- the application should implement a <code>RecordReader</code>, who is
|
|
|
- responsible for respecting record-boundaries and presents a
|
|
|
- record-oriented view of the logical <code>InputSplit</code> to the
|
|
|
- individual task.</p>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/textinputformat">
|
|
|
- TextInputFormat</a> is the default <code>InputFormat</code>.</p>
|
|
|
-
|
|
|
- <p>If <code>TextInputFormat</code> is the <code>InputFormat</code> for a
|
|
|
- given job, the framework detects input-files with the <em>.gz</em>
|
|
|
- extensions and automatically decompresses them using the
|
|
|
- appropriate <code>CompressionCodec</code>. However, it must be noted that
|
|
|
- compressed files with the above extensions cannot be <em>split</em> and
|
|
|
- each compressed file is processed in its entirety by a single mapper.</p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>InputSplit</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/inputsplit">
|
|
|
- InputSplit</a> represents the data to be processed by an individual
|
|
|
- <code>Mapper</code>.</p>
|
|
|
-
|
|
|
- <p>Typically <code>InputSplit</code> presents a byte-oriented view of
|
|
|
- the input, and it is the responsibility of <code>RecordReader</code>
|
|
|
- to process and present a record-oriented view.</p>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/filesplit">
|
|
|
- FileSplit</a> is the default <code>InputSplit</code>. It sets
|
|
|
- <code>map.input.file</code> to the path of the input file for the
|
|
|
- logical split.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>RecordReader</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/recordreader">
|
|
|
- RecordReader</a> reads <code><key, value></code> pairs from an
|
|
|
- <code>InputSplit</code>.</p>
|
|
|
-
|
|
|
- <p>Typically the <code>RecordReader</code> converts the byte-oriented
|
|
|
- view of the input, provided by the <code>InputSplit</code>, and
|
|
|
- presents a record-oriented to the <code>Mapper</code> implementations
|
|
|
- for processing. <code>RecordReader</code> thus assumes the
|
|
|
- responsibility of processing record boundaries and presents the tasks
|
|
|
- with keys and values.</p>
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Job Output</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/outputformat">
|
|
|
- OutputFormat</a> describes the output-specification for a Map/Reduce
|
|
|
- job.</p>
|
|
|
-
|
|
|
- <p>The Map/Reduce framework relies on the <code>OutputFormat</code> of
|
|
|
- the job to:</p>
|
|
|
- <ol>
|
|
|
- <li>
|
|
|
- Validate the output-specification of the job; for example, check that
|
|
|
- the output directory doesn't already exist.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Provide the <code>RecordWriter</code> implementation used to
|
|
|
- write the output files of the job. Output files are stored in a
|
|
|
- <code>FileSystem</code>.
|
|
|
- </li>
|
|
|
- </ol>
|
|
|
-
|
|
|
- <p><code>TextOutputFormat</code> is the default
|
|
|
- <code>OutputFormat</code>.</p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Lazy Output Creation</title>
|
|
|
- <p>It is possible to delay creation of output until the first write attempt
|
|
|
- by using <a href="ext:api/org/apache/hadoop/mapred/lib/lazyoutputformat">
|
|
|
- LazyOutputFormat</a>. This is particularly useful in preventing the
|
|
|
- creation of zero byte files when there is no call to output.collect
|
|
|
- (or Context.write). This is achieved by calling the static method
|
|
|
- <code>setOutputFormatClass</code> of <code>LazyOutputFormat</code>
|
|
|
- with the intended <code>OutputFormat</code> as the argument. The following example
|
|
|
- shows how to delay creation of files when using the <code>TextOutputFormat</code>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>
|
|
|
- <code> import org.apache.hadoop.mapred.lib.LazyOutputFormat;</code> <br/>
|
|
|
- <code> LazyOutputFormat.setOutputFormatClass(conf, TextOutputFormat.class);</code>
|
|
|
- </p>
|
|
|
-
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>OutputCommitter</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/outputcommitter">
|
|
|
- OutputCommitter</a> describes the commit of task output for a
|
|
|
- Map/Reduce job.</p>
|
|
|
-
|
|
|
- <p>The Map/Reduce framework relies on the <code>OutputCommitter</code>
|
|
|
- of the job to:</p>
|
|
|
- <ol>
|
|
|
- <li>
|
|
|
- Setup the job during initialization. For example, create
|
|
|
- the temporary output directory for the job during the
|
|
|
- initialization of the job.
|
|
|
- Job setup is done by a separate task when the job is
|
|
|
- in PREP state and after initializing tasks. Once the setup task
|
|
|
- completes, the job will be moved to RUNNING state.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Cleanup the job after the job completion. For example, remove the
|
|
|
- temporary output directory after the job completion.
|
|
|
- Job cleanup is done by a separate task at the end of the job.
|
|
|
- Job is declared SUCCEDED/FAILED/KILLED after the cleanup
|
|
|
- task completes.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Setup the task temporary output.
|
|
|
- Task setup is done as part of the same task, during task initialization.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Check whether a task needs a commit. This is to avoid the commit
|
|
|
- procedure if a task does not need commit.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Commit of the task output.
|
|
|
- Once task is done, the task will commit it's output if required.
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Discard the task commit.
|
|
|
- If the task has been failed/killed, the output will be cleaned-up.
|
|
|
- If task could not cleanup (in exception block), a separate task
|
|
|
- will be launched with same attempt-id to do the cleanup.
|
|
|
- </li>
|
|
|
- </ol>
|
|
|
- <p><code>FileOutputCommitter</code> is the default
|
|
|
- <code>OutputCommitter</code>. Job setup/cleanup tasks occupy
|
|
|
- map or reduce slots, whichever is free on the TaskTracker. And
|
|
|
- JobCleanup task, TaskCleanup tasks and JobSetup task have the highest
|
|
|
- priority, and in that order.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Task Side-Effect Files</title>
|
|
|
-
|
|
|
- <p>In some applications, component tasks need to create and/or write to
|
|
|
- side-files, which differ from the actual job-output files.</p>
|
|
|
-
|
|
|
- <p>In such cases there could be issues with two instances of the same
|
|
|
- <code>Mapper</code> or <code>Reducer</code> running simultaneously (for
|
|
|
- example, speculative tasks) trying to open and/or write to the same
|
|
|
- file (path) on the <code>FileSystem</code>. Hence the
|
|
|
- application-writer will have to pick unique names per task-attempt
|
|
|
- (using the attemptid, say <code>attempt_200709221812_0001_m_000000_0</code>),
|
|
|
- not just per task.</p>
|
|
|
-
|
|
|
- <p>To avoid these issues the Map/Reduce framework, when the
|
|
|
- <code>OutputCommitter</code> is <code>FileOutputCommitter</code>,
|
|
|
- maintains a special
|
|
|
- <code>${mapred.output.dir}/_temporary/_${taskid}</code> sub-directory
|
|
|
- accessible via <code>${mapred.work.output.dir}</code>
|
|
|
- for each task-attempt on the <code>FileSystem</code> where the output
|
|
|
- of the task-attempt is stored. On successful completion of the
|
|
|
- task-attempt, the files in the
|
|
|
- <code>${mapred.output.dir}/_temporary/_${taskid}</code> (only)
|
|
|
- are <em>promoted</em> to <code>${mapred.output.dir}</code>. Of course,
|
|
|
- the framework discards the sub-directory of unsuccessful task-attempts.
|
|
|
- This process is completely transparent to the application.</p>
|
|
|
-
|
|
|
- <p>The application-writer can take advantage of this feature by
|
|
|
- creating any side-files required in <code>${mapred.work.output.dir}</code>
|
|
|
- during execution of a task via
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/fileoutputformat/getworkoutputpath">
|
|
|
- FileOutputFormat.getWorkOutputPath()</a>, and the framework will promote them
|
|
|
- similarly for succesful task-attempts, thus eliminating the need to
|
|
|
- pick unique paths per task-attempt.</p>
|
|
|
-
|
|
|
- <p>Note: The value of <code>${mapred.work.output.dir}</code> during
|
|
|
- execution of a particular task-attempt is actually
|
|
|
- <code>${mapred.output.dir}/_temporary/_{$taskid}</code>, and this value is
|
|
|
- set by the Map/Reduce framework. So, just create any side-files in the
|
|
|
- path returned by
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/fileoutputformat/getworkoutputpath">
|
|
|
- FileOutputFormat.getWorkOutputPath() </a>from map/reduce
|
|
|
- task to take advantage of this feature.</p>
|
|
|
-
|
|
|
- <p>The entire discussion holds true for maps of jobs with
|
|
|
- reducer=NONE (i.e. 0 reduces) since output of the map, in that case,
|
|
|
- goes directly to HDFS.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>RecordWriter</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/recordwriter">
|
|
|
- RecordWriter</a> writes the output <code><key, value></code>
|
|
|
- pairs to an output file.</p>
|
|
|
-
|
|
|
- <p>RecordWriter implementations write the job outputs to the
|
|
|
- <code>FileSystem</code>.</p>
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Other Useful Features</title>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Submitting Jobs to Queues</title>
|
|
|
- <p>Users submit jobs to Queues. Queues, as collection of jobs,
|
|
|
- allow the system to provide specific functionality. For example,
|
|
|
- queues use ACLs to control which users
|
|
|
- who can submit jobs to them. Queues are expected to be primarily
|
|
|
- used by Hadoop Schedulers. </p>
|
|
|
-
|
|
|
- <p>Hadoop comes configured with a single mandatory queue, called
|
|
|
- 'default'. Queue names are defined in the
|
|
|
- <code>mapred.queue.names</code> property of the Hadoop site
|
|
|
- configuration. Some job schedulers, such as the
|
|
|
- <a href="capacity_scheduler.html">Capacity Scheduler</a>,
|
|
|
- support multiple queues.</p>
|
|
|
-
|
|
|
- <p>A job defines the queue it needs to be submitted to through the
|
|
|
- <code>mapred.job.queue.name</code> property, or through the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setqueuename">setQueueName(String)</a>
|
|
|
- API. Setting the queue name is optional. If a job is submitted
|
|
|
- without an associated queue name, it is submitted to the 'default'
|
|
|
- queue.</p>
|
|
|
- </section>
|
|
|
- <section>
|
|
|
- <title>Counters</title>
|
|
|
-
|
|
|
- <p><code>Counters</code> represent global counters, defined either by
|
|
|
- the Map/Reduce framework or applications. Each <code>Counter</code> can
|
|
|
- be of any <code>Enum</code> type. Counters of a particular
|
|
|
- <code>Enum</code> are bunched into groups of type
|
|
|
- <code>Counters.Group</code>.</p>
|
|
|
-
|
|
|
- <p>Applications can define arbitrary <code>Counters</code> (of type
|
|
|
- <code>Enum</code>) and update them via
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/reporter/incrcounterEnum">
|
|
|
- Reporter.incrCounter(Enum, long)</a> or
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/reporter/incrcounterString">
|
|
|
- Reporter.incrCounter(String, String, long)</a>
|
|
|
- in the <code>map</code> and/or
|
|
|
- <code>reduce</code> methods. These counters are then globally
|
|
|
- aggregated by the framework.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>DistributedCache</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/filecache/distributedcache">
|
|
|
- DistributedCache</a> distributes application-specific, large, read-only
|
|
|
- files efficiently.</p>
|
|
|
-
|
|
|
- <p><code>DistributedCache</code> is a facility provided by the
|
|
|
- Map/Reduce framework to cache files (text, archives, jars and so on)
|
|
|
- needed by applications.</p>
|
|
|
-
|
|
|
- <p>Applications specify the files to be cached via urls (hdfs://)
|
|
|
- in the <code>JobConf</code>. The <code>DistributedCache</code>
|
|
|
- assumes that the files specified via hdfs:// urls are already present
|
|
|
- on the <code>FileSystem</code>.</p>
|
|
|
-
|
|
|
- <p>The framework will copy the necessary files to the slave node
|
|
|
- before any tasks for the job are executed on that node. Its
|
|
|
- efficiency stems from the fact that the files are only copied once
|
|
|
- per job and the ability to cache archives which are un-archived on
|
|
|
- the slaves.</p>
|
|
|
-
|
|
|
- <p><code>DistributedCache</code> tracks the modification timestamps of
|
|
|
- the cached files. Clearly the cache files should not be modified by
|
|
|
- the application or externally while the job is executing.</p>
|
|
|
-
|
|
|
- <p><code>DistributedCache</code> can be used to distribute simple,
|
|
|
- read-only data/text files and more complex types such as archives and
|
|
|
- jars. Archives (zip, tar, tgz and tar.gz files) are
|
|
|
- <em>un-archived</em> at the slave nodes. Files
|
|
|
- have <em>execution permissions</em> set. </p>
|
|
|
-
|
|
|
- <p>The files/archives can be distributed by setting the property
|
|
|
- <code>mapred.cache.{files|archives}</code>. If more than one
|
|
|
- file/archive has to be distributed, they can be added as comma
|
|
|
- separated paths. The properties can also be set by APIs
|
|
|
- <a href="ext:api/org/apache/hadoop/filecache/distributedcache/addcachefile">
|
|
|
- DistributedCache.addCacheFile(URI,conf)</a>/
|
|
|
- <a href="ext:api/org/apache/hadoop/filecache/distributedcache/addcachearchive">
|
|
|
- DistributedCache.addCacheArchive(URI,conf)</a> and
|
|
|
- <a href="ext:api/org/apache/hadoop/filecache/distributedcache/setcachefiles">
|
|
|
- DistributedCache.setCacheFiles(URIs,conf)</a>/
|
|
|
- <a href="ext:api/org/apache/hadoop/filecache/distributedcache/setcachearchives">
|
|
|
- DistributedCache.setCacheArchives(URIs,conf)</a>
|
|
|
- where URI is of the form
|
|
|
- <code>hdfs://host:port/absolute-path#link-name</code>.
|
|
|
- In Streaming, the files can be distributed through command line
|
|
|
- option <code>-cacheFile/-cacheArchive</code>.</p>
|
|
|
-
|
|
|
- <p>Optionally users can also direct the <code>DistributedCache</code>
|
|
|
- to <em>symlink</em> the cached file(s) into the <code>current working
|
|
|
- directory</code> of the task via the
|
|
|
- <a href="ext:api/org/apache/hadoop/filecache/distributedcache/createsymlink">
|
|
|
- DistributedCache.createSymlink(Configuration)</a> api. Or by setting
|
|
|
- the configuration property <code>mapred.create.symlink</code>
|
|
|
- as <code>yes</code>. The DistributedCache will use the
|
|
|
- <code>fragment</code> of the URI as the name of the symlink.
|
|
|
- For example, the URI
|
|
|
- <code>hdfs://namenode:port/lib.so.1#lib.so</code>
|
|
|
- will have the symlink name as <code>lib.so</code> in task's cwd
|
|
|
- for the file <code>lib.so.1</code> in distributed cache.</p>
|
|
|
-
|
|
|
- <p>The <code>DistributedCache</code> can also be used as a
|
|
|
- rudimentary software distribution mechanism for use in the
|
|
|
- map and/or reduce tasks. It can be used to distribute both
|
|
|
- jars and native libraries. The
|
|
|
- <a href="ext:api/org/apache/hadoop/filecache/distributedcache/addarchivetoclasspath">
|
|
|
- DistributedCache.addArchiveToClassPath(Path, Configuration)</a> or
|
|
|
- <a href="ext:api/org/apache/hadoop/filecache/distributedcache/addfiletoclasspath">
|
|
|
- DistributedCache.addFileToClassPath(Path, Configuration)</a> api
|
|
|
- can be used to cache files/jars and also add them to the
|
|
|
- <em>classpath</em> of child-jvm. The same can be done by setting
|
|
|
- the configuration properties
|
|
|
- <code>mapred.job.classpath.{files|archives}</code>. Similarly the
|
|
|
- cached files that are symlinked into the working directory of the
|
|
|
- task can be used to distribute native libraries and load them.</p>
|
|
|
-
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Tool</title>
|
|
|
-
|
|
|
- <p>The <a href="ext:api/org/apache/hadoop/util/tool">Tool</a>
|
|
|
- interface supports the handling of generic Hadoop command-line options.
|
|
|
- </p>
|
|
|
-
|
|
|
- <p><code>Tool</code> is the standard for any Map/Reduce tool or
|
|
|
- application. The application should delegate the handling of
|
|
|
- standard command-line options to
|
|
|
- <a href="ext:api/org/apache/hadoop/util/genericoptionsparser">
|
|
|
- GenericOptionsParser</a> via
|
|
|
- <a href="ext:api/org/apache/hadoop/util/toolrunner/run">
|
|
|
- ToolRunner.run(Tool, String[])</a> and only handle its custom
|
|
|
- arguments.</p>
|
|
|
-
|
|
|
- <p>
|
|
|
- The generic Hadoop command-line options are:<br/>
|
|
|
- <code>
|
|
|
- -conf <configuration file>
|
|
|
- </code>
|
|
|
- <br/>
|
|
|
- <code>
|
|
|
- -D <property=value>
|
|
|
- </code>
|
|
|
- <br/>
|
|
|
- <code>
|
|
|
- -fs <local|namenode:port>
|
|
|
- </code>
|
|
|
- <br/>
|
|
|
- <code>
|
|
|
- -jt <local|jobtracker:port>
|
|
|
- </code>
|
|
|
- </p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>IsolationRunner</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/isolationrunner">
|
|
|
- IsolationRunner</a> is a utility to help debug Map/Reduce programs.</p>
|
|
|
-
|
|
|
- <p>To use the <code>IsolationRunner</code>, first set
|
|
|
- <code>keep.failed.tasks.files</code> to <code>true</code>
|
|
|
- (also see <code>keep.tasks.files.pattern</code>).</p>
|
|
|
-
|
|
|
- <p>
|
|
|
- Next, go to the node on which the failed task ran and go to the
|
|
|
- <code>TaskTracker</code>'s local directory and run the
|
|
|
- <code>IsolationRunner</code>:<br/>
|
|
|
- <code>$ cd <local path>/taskTracker/${taskid}/work</code><br/>
|
|
|
- <code>
|
|
|
- $ bin/hadoop org.apache.hadoop.mapred.IsolationRunner ../job.xml
|
|
|
- </code>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p><code>IsolationRunner</code> will run the failed task in a single
|
|
|
- jvm, which can be in the debugger, over precisely the same input.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Profiling</title>
|
|
|
- <p>Profiling is a utility to get a representative (2 or 3) sample
|
|
|
- of built-in java profiler for a sample of maps and reduces. </p>
|
|
|
-
|
|
|
- <p>User can specify whether the system should collect profiler
|
|
|
- information for some of the tasks in the job by setting the
|
|
|
- configuration property <code>mapred.task.profile</code>. The
|
|
|
- value can be set using the api
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setprofileenabled">
|
|
|
- JobConf.setProfileEnabled(boolean)</a>. If the value is set
|
|
|
- <code>true</code>, the task profiling is enabled. The profiler
|
|
|
- information is stored in the user log directory. By default,
|
|
|
- profiling is not enabled for the job. </p>
|
|
|
-
|
|
|
- <p>Once user configures that profiling is needed, she/he can use
|
|
|
- the configuration property
|
|
|
- <code>mapred.task.profile.{maps|reduces}</code> to set the ranges
|
|
|
- of map/reduce tasks to profile. The value can be set using the api
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setprofiletaskrange">
|
|
|
- JobConf.setProfileTaskRange(boolean,String)</a>.
|
|
|
- By default, the specified range is <code>0-2</code>.</p>
|
|
|
-
|
|
|
- <p>User can also specify the profiler configuration arguments by
|
|
|
- setting the configuration property
|
|
|
- <code>mapred.task.profile.params</code>. The value can be specified
|
|
|
- using the api
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setprofileparams">
|
|
|
- JobConf.setProfileParams(String)</a>. If the string contains a
|
|
|
- <code>%s</code>, it will be replaced with the name of the profiling
|
|
|
- output file when the task runs. These parameters are passed to the
|
|
|
- task child JVM on the command line. The default value for
|
|
|
- the profiling parameters is
|
|
|
- <code>-agentlib:hprof=cpu=samples,heap=sites,force=n,thread=y,verbose=n,file=%s</code>
|
|
|
- </p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Debugging</title>
|
|
|
- <p>The Map/Reduce framework provides a facility to run user-provided
|
|
|
- scripts for debugging. When a map/reduce task fails, a user can run
|
|
|
- a debug script, to process task logs for example. The script is
|
|
|
- given access to the task's stdout and stderr outputs, syslog and
|
|
|
- jobconf. The output from the debug script's stdout and stderr is
|
|
|
- displayed on the console diagnostics and also as part of the
|
|
|
- job UI. </p>
|
|
|
-
|
|
|
- <p> In the following sections we discuss how to submit a debug script
|
|
|
- with a job. The script file needs to be distributed and submitted to
|
|
|
- the framework.</p>
|
|
|
- <section>
|
|
|
- <title> How to distribute the script file: </title>
|
|
|
- <p>
|
|
|
- The user needs to use
|
|
|
- <a href="mapred_tutorial.html#DistributedCache">DistributedCache</a>
|
|
|
- to <em>distribute</em> and <em>symlink</em> the script file.</p>
|
|
|
- </section>
|
|
|
- <section>
|
|
|
- <title> How to submit the script: </title>
|
|
|
- <p> A quick way to submit the debug script is to set values for the
|
|
|
- properties <code>mapred.map.task.debug.script</code> and
|
|
|
- <code>mapred.reduce.task.debug.script</code>, for debugging map and
|
|
|
- reduce tasks respectively. These properties can also be set by using APIs
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setmapdebugscript">
|
|
|
- JobConf.setMapDebugScript(String) </a> and
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setreducedebugscript">
|
|
|
- JobConf.setReduceDebugScript(String) </a>. In streaming mode, a debug
|
|
|
- script can be submitted with the command-line options
|
|
|
- <code>-mapdebug</code> and <code>-reducedebug</code>, for debugging
|
|
|
- map and reduce tasks respectively.</p>
|
|
|
-
|
|
|
- <p>The arguments to the script are the task's stdout, stderr,
|
|
|
- syslog and jobconf files. The debug command, run on the node where
|
|
|
- the map/reduce task failed, is: <br/>
|
|
|
- <code> $script $stdout $stderr $syslog $jobconf </code> </p>
|
|
|
-
|
|
|
- <p> Pipes programs have the c++ program name as a fifth argument
|
|
|
- for the command. Thus for the pipes programs the command is <br/>
|
|
|
- <code>$script $stdout $stderr $syslog $jobconf $program </code>
|
|
|
- </p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title> Default Behavior: </title>
|
|
|
- <p> For pipes, a default script is run to process core dumps under
|
|
|
- gdb, prints stack trace and gives info about running threads. </p>
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>JobControl</title>
|
|
|
-
|
|
|
- <p><a href="ext:api/org/apache/hadoop/mapred/jobcontrol/package-summary">
|
|
|
- JobControl</a> is a utility which encapsulates a set of Map/Reduce jobs
|
|
|
- and their dependencies.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Data Compression</title>
|
|
|
-
|
|
|
- <p>Hadoop Map/Reduce provides facilities for the application-writer to
|
|
|
- specify compression for both intermediate map-outputs and the
|
|
|
- job-outputs i.e. output of the reduces. It also comes bundled with
|
|
|
- <a href="ext:api/org/apache/hadoop/io/compress/compressioncodec">
|
|
|
- CompressionCodec</a> implementation for the
|
|
|
- <a href="ext:zlib">zlib</a> compression
|
|
|
- algorithm. The <a href="ext:gzip">gzip</a> file format is also
|
|
|
- supported.</p>
|
|
|
-
|
|
|
- <p>Hadoop also provides native implementations of the above compression
|
|
|
- codecs for reasons of both performance (zlib) and non-availability of
|
|
|
- Java libraries. More details on their usage and availability are
|
|
|
- available <a href="native_libraries.html">here</a>.</p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Intermediate Outputs</title>
|
|
|
-
|
|
|
- <p>Applications can control compression of intermediate map-outputs
|
|
|
- via the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setcompressmapoutput">
|
|
|
- JobConf.setCompressMapOutput(boolean)</a> api and the
|
|
|
- <code>CompressionCodec</code> to be used via the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setmapoutputcompressorclass">
|
|
|
- JobConf.setMapOutputCompressorClass(Class)</a> api.</p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Job Outputs</title>
|
|
|
-
|
|
|
- <p>Applications can control compression of job-outputs via the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/fileoutputformat/setcompressoutput">
|
|
|
- FileOutputFormat.setCompressOutput(JobConf, boolean)</a> api and the
|
|
|
- <code>CompressionCodec</code> to be used can be specified via the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/fileoutputformat/setoutputcompressorclass">
|
|
|
- FileOutputFormat.setOutputCompressorClass(JobConf, Class)</a> api.</p>
|
|
|
-
|
|
|
- <p>If the job outputs are to be stored in the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/sequencefileoutputformat">
|
|
|
- SequenceFileOutputFormat</a>, the required
|
|
|
- <code>SequenceFile.CompressionType</code> (i.e. <code>RECORD</code> /
|
|
|
- <code>BLOCK</code> - defaults to <code>RECORD</code>) can be
|
|
|
- specified via the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/sequencefileoutputformat/setoutputcompressiontype">
|
|
|
- SequenceFileOutputFormat.setOutputCompressionType(JobConf,
|
|
|
- SequenceFile.CompressionType)</a> api.</p>
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Skipping Bad Records</title>
|
|
|
- <p>Hadoop provides an option where a certain set of bad input
|
|
|
- records can be skipped when processing map inputs. Applications
|
|
|
- can control this feature through the
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/skipbadrecords">
|
|
|
- SkipBadRecords</a> class.</p>
|
|
|
-
|
|
|
- <p>This feature can be used when map tasks crash deterministically
|
|
|
- on certain input. This usually happens due to bugs in the
|
|
|
- map function. Usually, the user would have to fix these bugs.
|
|
|
- This is, however, not possible sometimes. The bug may be in third
|
|
|
- party libraries, for example, for which the source code is not
|
|
|
- available. In such cases, the task never completes successfully even
|
|
|
- after multiple attempts, and the job fails. With this feature, only
|
|
|
- a small portion of data surrounding the
|
|
|
- bad records is lost, which may be acceptable for some applications
|
|
|
- (those performing statistical analysis on very large data, for
|
|
|
- example). </p>
|
|
|
-
|
|
|
- <p>By default this feature is disabled. For enabling it,
|
|
|
- refer to <a href="ext:api/org/apache/hadoop/mapred/skipbadrecords/setmappermaxskiprecords">
|
|
|
- SkipBadRecords.setMapperMaxSkipRecords(Configuration, long)</a> and
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/skipbadrecords/setreducermaxskipgroups">
|
|
|
- SkipBadRecords.setReducerMaxSkipGroups(Configuration, long)</a>.
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>With this feature enabled, the framework gets into 'skipping
|
|
|
- mode' after a certain number of map failures. For more details,
|
|
|
- see <a href="ext:api/org/apache/hadoop/mapred/skipbadrecords/setattemptsTostartskipping">
|
|
|
- SkipBadRecords.setAttemptsToStartSkipping(Configuration, int)</a>.
|
|
|
- In 'skipping mode', map tasks maintain the range of records being
|
|
|
- processed. To do this, the framework relies on the processed record
|
|
|
- counter. See <a href="ext:api/org/apache/hadoop/mapred/skipbadrecords/counter_map_processed_records">
|
|
|
- SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS</a> and
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/skipbadrecords/counter_reduce_processed_groups">
|
|
|
- SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS</a>.
|
|
|
- This counter enables the framework to know how many records have
|
|
|
- been processed successfully, and hence, what record range caused
|
|
|
- a task to crash. On further attempts, this range of records is
|
|
|
- skipped.</p>
|
|
|
-
|
|
|
- <p>The number of records skipped depends on how frequently the
|
|
|
- processed record counter is incremented by the application.
|
|
|
- It is recommended that this counter be incremented after every
|
|
|
- record is processed. This may not be possible in some applications
|
|
|
- that typically batch their processing. In such cases, the framework
|
|
|
- may skip additional records surrounding the bad record. Users can
|
|
|
- control the number of skipped records through
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/skipbadrecords/setmappermaxskiprecords">
|
|
|
- SkipBadRecords.setMapperMaxSkipRecords(Configuration, long)</a> and
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/skipbadrecords/setreducermaxskipgroups">
|
|
|
- SkipBadRecords.setReducerMaxSkipGroups(Configuration, long)</a>.
|
|
|
- The framework tries to narrow the range of skipped records using a
|
|
|
- binary search-like approach. The skipped range is divided into two
|
|
|
- halves and only one half gets executed. On subsequent
|
|
|
- failures, the framework figures out which half contains
|
|
|
- bad records. A task will be re-executed till the
|
|
|
- acceptable skipped value is met or all task attempts are exhausted.
|
|
|
- To increase the number of task attempts, use
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setmaxmapattempts">
|
|
|
- JobConf.setMaxMapAttempts(int)</a> and
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/jobconf/setmaxreduceattempts">
|
|
|
- JobConf.setMaxReduceAttempts(int)</a>.
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Skipped records are written to HDFS in the sequence file
|
|
|
- format, for later analysis. The location can be changed through
|
|
|
- <a href="ext:api/org/apache/hadoop/mapred/skipbadrecords/setskipoutputpath">
|
|
|
- SkipBadRecords.setSkipOutputPath(JobConf, Path)</a>.
|
|
|
- </p>
|
|
|
-
|
|
|
- </section>
|
|
|
-
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Example: WordCount v2.0</title>
|
|
|
-
|
|
|
- <p>Here is a more complete <code>WordCount</code> which uses many of the
|
|
|
- features provided by the Map/Reduce framework we discussed so far.</p>
|
|
|
-
|
|
|
- <p>This needs the HDFS to be up and running, especially for the
|
|
|
- <code>DistributedCache</code>-related features. Hence it only works with a
|
|
|
- <a href="quickstart.html#SingleNodeSetup">pseudo-distributed</a> or
|
|
|
- <a href="quickstart.html#Fully-Distributed+Operation">fully-distributed</a>
|
|
|
- Hadoop installation.</p>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Source Code</title>
|
|
|
-
|
|
|
- <table>
|
|
|
- <tr>
|
|
|
- <th></th>
|
|
|
- <th>WordCount.java</th>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>1.</td>
|
|
|
- <td>
|
|
|
- <code>package org.myorg;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>2.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>3.</td>
|
|
|
- <td>
|
|
|
- <code>import java.io.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>4.</td>
|
|
|
- <td>
|
|
|
- <code>import java.util.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>5.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>6.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.fs.Path;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>7.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.filecache.DistributedCache;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>8.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.conf.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>9.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.io.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>10.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.mapred.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>11.</td>
|
|
|
- <td>
|
|
|
- <code>import org.apache.hadoop.util.*;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>12.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>13.</td>
|
|
|
- <td>
|
|
|
- <code>public class WordCount extends Configured implements Tool {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>14.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>15.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- public static class Map extends MapReduceBase
|
|
|
- implements Mapper<LongWritable, Text, Text, IntWritable> {
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>16.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>17.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- static enum Counters { INPUT_WORDS }
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>18.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>19.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- private final static IntWritable one = new IntWritable(1);
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>20.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>private Text word = new Text();</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>21.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>22.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>private boolean caseSensitive = true;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>23.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>private Set<String> patternsToSkip = new HashSet<String>();</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>24.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>25.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>private long numRecords = 0;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>26.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>private String inputFile;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>27.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>28.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>public void configure(JobConf job) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>29.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- caseSensitive = job.getBoolean("wordcount.case.sensitive", true);
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>30.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>inputFile = job.get("map.input.file");</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>31.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>32.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>if (job.getBoolean("wordcount.skip.patterns", false)) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>33.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>Path[] patternsFiles = new Path[0];</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>34.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>try {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>35.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- patternsFiles = DistributedCache.getLocalCacheFiles(job);
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>36.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>} catch (IOException ioe) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>37.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- System.err.println("Caught exception while getting cached files: "
|
|
|
- + StringUtils.stringifyException(ioe));
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>38.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>39.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>for (Path patternsFile : patternsFiles) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>40.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>parseSkipFile(patternsFile);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>41.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>42.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>43.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>44.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>45.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>private void parseSkipFile(Path patternsFile) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>46.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>try {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>47.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- BufferedReader fis =
|
|
|
- new BufferedReader(new FileReader(patternsFile.toString()));
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>48.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>String pattern = null;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>49.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>while ((pattern = fis.readLine()) != null) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>50.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>patternsToSkip.add(pattern);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>51.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>52.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>} catch (IOException ioe) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>53.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- System.err.println("Caught exception while parsing the cached file '" +
|
|
|
- patternsFile + "' : " +
|
|
|
- StringUtils.stringifyException(ioe));
|
|
|
-
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>54.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>55.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>56.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>57.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- public void map(LongWritable key, Text value,
|
|
|
- OutputCollector<Text, IntWritable> output,
|
|
|
- Reporter reporter) throws IOException {
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>58.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- String line =
|
|
|
- (caseSensitive) ? value.toString() :
|
|
|
- value.toString().toLowerCase();
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>59.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>60.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>for (String pattern : patternsToSkip) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>61.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>line = line.replaceAll(pattern, "");</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>62.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>63.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>64.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>StringTokenizer tokenizer = new StringTokenizer(line);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>65.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>while (tokenizer.hasMoreTokens()) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>66.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>word.set(tokenizer.nextToken());</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>67.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>output.collect(word, one);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>68.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>reporter.incrCounter(Counters.INPUT_WORDS, 1);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>69.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>70.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>71.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>if ((++numRecords % 100) == 0) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>72.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- reporter.setStatus("Finished processing " + numRecords +
|
|
|
- " records " + "from the input file: " +
|
|
|
- inputFile);
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>73.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>74.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>75.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>76.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>77.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- public static class Reduce extends MapReduceBase implements
|
|
|
- Reducer<Text, IntWritable, Text, IntWritable> {
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>78.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- public void reduce(Text key, Iterator<IntWritable> values,
|
|
|
- OutputCollector<Text, IntWritable> output,
|
|
|
- Reporter reporter) throws IOException {
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>79.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>int sum = 0;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>80.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>while (values.hasNext()) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>81.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>sum += values.next().get();</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>82.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>83.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>output.collect(key, new IntWritable(sum));</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>84.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>85.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>86.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>87.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>public int run(String[] args) throws Exception {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>88.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- JobConf conf = new JobConf(getConf(), WordCount.class);
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>89.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setJobName("wordcount");</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>90.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>91.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setOutputKeyClass(Text.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>92.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setOutputValueClass(IntWritable.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>93.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>94.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setMapperClass(Map.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>95.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setCombinerClass(Reduce.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>96.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setReducerClass(Reduce.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>97.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>98.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setInputFormat(TextInputFormat.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>99.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>conf.setOutputFormat(TextOutputFormat.class);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>100.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>101.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- List<String> other_args = new ArrayList<String>();
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>102.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>for (int i=0; i < args.length; ++i) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>103.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>if ("-skip".equals(args[i])) {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>104.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- DistributedCache.addCacheFile(new Path(args[++i]).toUri(), conf);
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>105.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- conf.setBoolean("wordcount.skip.patterns", true);
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>106.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>} else {</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>107.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>other_args.add(args[i]);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>108.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>109.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>110.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>111.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>FileInputFormat.setInputPaths(conf, new Path(other_args.get(0)));</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>112.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>113.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>114.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>JobClient.runJob(conf);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>115.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>return 0;</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>116.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>117.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>118.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- public static void main(String[] args) throws Exception {
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>119.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>
|
|
|
- int res = ToolRunner.run(new Configuration(), new WordCount(),
|
|
|
- args);
|
|
|
- </code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>120.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>System.exit(res);</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>121.</td>
|
|
|
- <td>
|
|
|
-
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>122.</td>
|
|
|
- <td>
|
|
|
- <code>}</code>
|
|
|
- </td>
|
|
|
- </tr>
|
|
|
- <tr>
|
|
|
- <td>123.</td>
|
|
|
- <td></td>
|
|
|
- </tr>
|
|
|
- </table>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Sample Runs</title>
|
|
|
-
|
|
|
- <p>Sample text-files as input:</p>
|
|
|
- <p>
|
|
|
- <code>$ bin/hadoop dfs -ls /usr/joe/wordcount/input/</code><br/>
|
|
|
- <code>/usr/joe/wordcount/input/file01</code><br/>
|
|
|
- <code>/usr/joe/wordcount/input/file02</code><br/>
|
|
|
- <br/>
|
|
|
- <code>$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01</code><br/>
|
|
|
- <code>Hello World, Bye World!</code><br/>
|
|
|
- <br/>
|
|
|
- <code>$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02</code><br/>
|
|
|
- <code>Hello Hadoop, Goodbye to hadoop.</code>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Run the application:</p>
|
|
|
- <p>
|
|
|
- <code>
|
|
|
- $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
|
|
|
- /usr/joe/wordcount/input /usr/joe/wordcount/output
|
|
|
- </code>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Output:</p>
|
|
|
- <p>
|
|
|
- <code>
|
|
|
- $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
|
|
|
- </code>
|
|
|
- <br/>
|
|
|
- <code>Bye 1</code><br/>
|
|
|
- <code>Goodbye 1</code><br/>
|
|
|
- <code>Hadoop, 1</code><br/>
|
|
|
- <code>Hello 2</code><br/>
|
|
|
- <code>World! 1</code><br/>
|
|
|
- <code>World, 1</code><br/>
|
|
|
- <code>hadoop. 1</code><br/>
|
|
|
- <code>to 1</code><br/>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Notice that the inputs differ from the first version we looked at,
|
|
|
- and how they affect the outputs.</p>
|
|
|
-
|
|
|
- <p>Now, lets plug-in a pattern-file which lists the word-patterns to be
|
|
|
- ignored, via the <code>DistributedCache</code>.</p>
|
|
|
-
|
|
|
- <p>
|
|
|
- <code>$ hadoop dfs -cat /user/joe/wordcount/patterns.txt</code><br/>
|
|
|
- <code>\.</code><br/>
|
|
|
- <code>\,</code><br/>
|
|
|
- <code>\!</code><br/>
|
|
|
- <code>to</code><br/>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Run it again, this time with more options:</p>
|
|
|
- <p>
|
|
|
- <code>
|
|
|
- $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
|
|
|
- -Dwordcount.case.sensitive=true /usr/joe/wordcount/input
|
|
|
- /usr/joe/wordcount/output -skip /user/joe/wordcount/patterns.txt
|
|
|
- </code>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>As expected, the output:</p>
|
|
|
- <p>
|
|
|
- <code>
|
|
|
- $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
|
|
|
- </code>
|
|
|
- <br/>
|
|
|
- <code>Bye 1</code><br/>
|
|
|
- <code>Goodbye 1</code><br/>
|
|
|
- <code>Hadoop 1</code><br/>
|
|
|
- <code>Hello 2</code><br/>
|
|
|
- <code>World 2</code><br/>
|
|
|
- <code>hadoop 1</code><br/>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Run it once more, this time switch-off case-sensitivity:</p>
|
|
|
- <p>
|
|
|
- <code>
|
|
|
- $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
|
|
|
- -Dwordcount.case.sensitive=false /usr/joe/wordcount/input
|
|
|
- /usr/joe/wordcount/output -skip /user/joe/wordcount/patterns.txt
|
|
|
- </code>
|
|
|
- </p>
|
|
|
-
|
|
|
- <p>Sure enough, the output:</p>
|
|
|
- <p>
|
|
|
- <code>
|
|
|
- $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
|
|
|
- </code>
|
|
|
- <br/>
|
|
|
- <code>bye 1</code><br/>
|
|
|
- <code>goodbye 1</code><br/>
|
|
|
- <code>hadoop 2</code><br/>
|
|
|
- <code>hello 2</code><br/>
|
|
|
- <code>world 2</code><br/>
|
|
|
- </p>
|
|
|
- </section>
|
|
|
-
|
|
|
- <section>
|
|
|
- <title>Highlights</title>
|
|
|
-
|
|
|
- <p>The second version of <code>WordCount</code> improves upon the
|
|
|
- previous one by using some features offered by the Map/Reduce framework:
|
|
|
- </p>
|
|
|
- <ul>
|
|
|
- <li>
|
|
|
- Demonstrates how applications can access configuration parameters
|
|
|
- in the <code>configure</code> method of the <code>Mapper</code> (and
|
|
|
- <code>Reducer</code>) implementations (lines 28-43).
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Demonstrates how the <code>DistributedCache</code> can be used to
|
|
|
- distribute read-only data needed by the jobs. Here it allows the user
|
|
|
- to specify word-patterns to skip while counting (line 104).
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Demonstrates the utility of the <code>Tool</code> interface and the
|
|
|
- <code>GenericOptionsParser</code> to handle generic Hadoop
|
|
|
- command-line options (lines 87-116, 119).
|
|
|
- </li>
|
|
|
- <li>
|
|
|
- Demonstrates how applications can use <code>Counters</code> (line 68)
|
|
|
- and how they can set application-specific status information via
|
|
|
- the <code>Reporter</code> instance passed to the <code>map</code> (and
|
|
|
- <code>reduce</code>) method (line 72).
|
|
|
- </li>
|
|
|
- </ul>
|
|
|
-
|
|
|
- </section>
|
|
|
- </section>
|
|
|
-
|
|
|
- <p>
|
|
|
- <em>Java and JNI are trademarks or registered trademarks of
|
|
|
- Sun Microsystems, Inc. in the United States and other countries.</em>
|
|
|
- </p>
|
|
|
-
|
|
|
- </body>
|
|
|
-
|
|
|
-</document>
|