|
@@ -0,0 +1,2074 @@
|
|
|
+/*
|
|
|
+ * Licensed to the Apache Software Foundation (ASF) under one or more
|
|
|
+ * contributor license agreements. See the NOTICE file distributed with
|
|
|
+ * this work for additional information regarding copyright ownership.
|
|
|
+ * The ASF licenses this file to You under the Apache License, Version 2.0
|
|
|
+ * (the "License"); you may not use this file except in compliance with
|
|
|
+ * the License. You may obtain a copy of the License at
|
|
|
+ *
|
|
|
+ * http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+ *
|
|
|
+ * Unless required by applicable law or agreed to in writing, software
|
|
|
+ * distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+ * See the License for the specific language governing permissions and
|
|
|
+ * limitations under the License.
|
|
|
+ *
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * This package is based on the work done by Keiron Liddle, Aftex Software
|
|
|
+ * <keiron@aftexsw.com> to whom the Ant project is very grateful for his
|
|
|
+ * great code.
|
|
|
+ */
|
|
|
+
|
|
|
+package org.apache.hadoop.io.compress.bzip2;
|
|
|
+
|
|
|
+import java.io.OutputStream;
|
|
|
+import java.io.IOException;
|
|
|
+
|
|
|
+/**
|
|
|
+ * An output stream that compresses into the BZip2 format (without the file
|
|
|
+ * header chars) into another stream.
|
|
|
+ *
|
|
|
+ * <p>
|
|
|
+ * The compression requires large amounts of memory. Thus you should call the
|
|
|
+ * {@link #close() close()} method as soon as possible, to force
|
|
|
+ * <tt>CBZip2OutputStream</tt> to release the allocated memory.
|
|
|
+ * </p>
|
|
|
+ *
|
|
|
+ * <p>
|
|
|
+ * You can shrink the amount of allocated memory and maybe raise the compression
|
|
|
+ * speed by choosing a lower blocksize, which in turn may cause a lower
|
|
|
+ * compression ratio. You can avoid unnecessary memory allocation by avoiding
|
|
|
+ * using a blocksize which is bigger than the size of the input.
|
|
|
+ * </p>
|
|
|
+ *
|
|
|
+ * <p>
|
|
|
+ * You can compute the memory usage for compressing by the following formula:
|
|
|
+ * </p>
|
|
|
+ *
|
|
|
+ * <pre>
|
|
|
+ * <code>400k + (9 * blocksize)</code>.
|
|
|
+ * </pre>
|
|
|
+ *
|
|
|
+ * <p>
|
|
|
+ * To get the memory required for decompression by {@link CBZip2InputStream
|
|
|
+ * CBZip2InputStream} use
|
|
|
+ * </p>
|
|
|
+ *
|
|
|
+ * <pre>
|
|
|
+ * <code>65k + (5 * blocksize)</code>.
|
|
|
+ * </pre>
|
|
|
+ *
|
|
|
+ * <table width="100%" border="1">
|
|
|
+ * <colgroup> <col width="33%" /> <col width="33%" /> <col width="33%" />
|
|
|
+ * </colgroup>
|
|
|
+ * <tr>
|
|
|
+ * <th colspan="3">Memory usage by blocksize</th>
|
|
|
+ * </tr>
|
|
|
+ * <tr>
|
|
|
+ * <th align="right">Blocksize</th> <th align="right">Compression<br>
|
|
|
+ * memory usage</th> <th align="right">Decompression<br>
|
|
|
+ * memory usage</th>
|
|
|
+ * </tr>
|
|
|
+ * <tr>
|
|
|
+ * <td align="right">100k</td>
|
|
|
+ * <td align="right">1300k</td>
|
|
|
+ * <td align="right">565k</td>
|
|
|
+ * </tr>
|
|
|
+ * <tr>
|
|
|
+ * <td align="right">200k</td>
|
|
|
+ * <td align="right">2200k</td>
|
|
|
+ * <td align="right">1065k</td>
|
|
|
+ * </tr>
|
|
|
+ * <tr>
|
|
|
+ * <td align="right">300k</td>
|
|
|
+ * <td align="right">3100k</td>
|
|
|
+ * <td align="right">1565k</td>
|
|
|
+ * </tr>
|
|
|
+ * <tr>
|
|
|
+ * <td align="right">400k</td>
|
|
|
+ * <td align="right">4000k</td>
|
|
|
+ * <td align="right">2065k</td>
|
|
|
+ * </tr>
|
|
|
+ * <tr>
|
|
|
+ * <td align="right">500k</td>
|
|
|
+ * <td align="right">4900k</td>
|
|
|
+ * <td align="right">2565k</td>
|
|
|
+ * </tr>
|
|
|
+ * <tr>
|
|
|
+ * <td align="right">600k</td>
|
|
|
+ * <td align="right">5800k</td>
|
|
|
+ * <td align="right">3065k</td>
|
|
|
+ * </tr>
|
|
|
+ * <tr>
|
|
|
+ * <td align="right">700k</td>
|
|
|
+ * <td align="right">6700k</td>
|
|
|
+ * <td align="right">3565k</td>
|
|
|
+ * </tr>
|
|
|
+ * <tr>
|
|
|
+ * <td align="right">800k</td>
|
|
|
+ * <td align="right">7600k</td>
|
|
|
+ * <td align="right">4065k</td>
|
|
|
+ * </tr>
|
|
|
+ * <tr>
|
|
|
+ * <td align="right">900k</td>
|
|
|
+ * <td align="right">8500k</td>
|
|
|
+ * <td align="right">4565k</td>
|
|
|
+ * </tr>
|
|
|
+ * </table>
|
|
|
+ *
|
|
|
+ * <p>
|
|
|
+ * For decompression <tt>CBZip2InputStream</tt> allocates less memory if the
|
|
|
+ * bzipped input is smaller than one block.
|
|
|
+ * </p>
|
|
|
+ *
|
|
|
+ * <p>
|
|
|
+ * Instances of this class are not threadsafe.
|
|
|
+ * </p>
|
|
|
+ *
|
|
|
+ * <p>
|
|
|
+ * TODO: Update to BZip2 1.0.1
|
|
|
+ * </p>
|
|
|
+ *
|
|
|
+ */
|
|
|
+public class CBZip2OutputStream extends OutputStream implements BZip2Constants {
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The minimum supported blocksize <tt> == 1</tt>.
|
|
|
+ */
|
|
|
+ public static final int MIN_BLOCKSIZE = 1;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The maximum supported blocksize <tt> == 9</tt>.
|
|
|
+ */
|
|
|
+ public static final int MAX_BLOCKSIZE = 9;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This constant is accessible by subclasses for historical purposes. If you
|
|
|
+ * don't know what it means then you don't need it.
|
|
|
+ */
|
|
|
+ protected static final int SETMASK = (1 << 21);
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This constant is accessible by subclasses for historical purposes. If you
|
|
|
+ * don't know what it means then you don't need it.
|
|
|
+ */
|
|
|
+ protected static final int CLEARMASK = (~SETMASK);
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This constant is accessible by subclasses for historical purposes. If you
|
|
|
+ * don't know what it means then you don't need it.
|
|
|
+ */
|
|
|
+ protected static final int GREATER_ICOST = 15;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This constant is accessible by subclasses for historical purposes. If you
|
|
|
+ * don't know what it means then you don't need it.
|
|
|
+ */
|
|
|
+ protected static final int LESSER_ICOST = 0;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This constant is accessible by subclasses for historical purposes. If you
|
|
|
+ * don't know what it means then you don't need it.
|
|
|
+ */
|
|
|
+ protected static final int SMALL_THRESH = 20;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This constant is accessible by subclasses for historical purposes. If you
|
|
|
+ * don't know what it means then you don't need it.
|
|
|
+ */
|
|
|
+ protected static final int DEPTH_THRESH = 10;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This constant is accessible by subclasses for historical purposes. If you
|
|
|
+ * don't know what it means then you don't need it.
|
|
|
+ */
|
|
|
+ protected static final int WORK_FACTOR = 30;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This constant is accessible by subclasses for historical purposes. If you
|
|
|
+ * don't know what it means then you don't need it.
|
|
|
+ * <p>
|
|
|
+ * If you are ever unlucky/improbable enough to get a stack overflow whilst
|
|
|
+ * sorting, increase the following constant and try again. In practice I
|
|
|
+ * have never seen the stack go above 27 elems, so the following limit seems
|
|
|
+ * very generous.
|
|
|
+ * </p>
|
|
|
+ */
|
|
|
+ protected static final int QSORT_STACK_SIZE = 1000;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Knuth's increments seem to work better than Incerpi-Sedgewick here.
|
|
|
+ * Possibly because the number of elems to sort is usually small, typically
|
|
|
+ * <= 20.
|
|
|
+ */
|
|
|
+ private static final int[] INCS = { 1, 4, 13, 40, 121, 364, 1093, 3280,
|
|
|
+ 9841, 29524, 88573, 265720, 797161, 2391484 };
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This method is accessible by subclasses for historical purposes. If you
|
|
|
+ * don't know what it does then you don't need it.
|
|
|
+ */
|
|
|
+ protected static void hbMakeCodeLengths(char[] len, int[] freq,
|
|
|
+ int alphaSize, int maxLen) {
|
|
|
+ /*
|
|
|
+ * Nodes and heap entries run from 1. Entry 0 for both the heap and
|
|
|
+ * nodes is a sentinel.
|
|
|
+ */
|
|
|
+ final int[] heap = new int[MAX_ALPHA_SIZE * 2];
|
|
|
+ final int[] weight = new int[MAX_ALPHA_SIZE * 2];
|
|
|
+ final int[] parent = new int[MAX_ALPHA_SIZE * 2];
|
|
|
+
|
|
|
+ for (int i = alphaSize; --i >= 0;) {
|
|
|
+ weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (boolean tooLong = true; tooLong;) {
|
|
|
+ tooLong = false;
|
|
|
+
|
|
|
+ int nNodes = alphaSize;
|
|
|
+ int nHeap = 0;
|
|
|
+ heap[0] = 0;
|
|
|
+ weight[0] = 0;
|
|
|
+ parent[0] = -2;
|
|
|
+
|
|
|
+ for (int i = 1; i <= alphaSize; i++) {
|
|
|
+ parent[i] = -1;
|
|
|
+ nHeap++;
|
|
|
+ heap[nHeap] = i;
|
|
|
+
|
|
|
+ int zz = nHeap;
|
|
|
+ int tmp = heap[zz];
|
|
|
+ while (weight[tmp] < weight[heap[zz >> 1]]) {
|
|
|
+ heap[zz] = heap[zz >> 1];
|
|
|
+ zz >>= 1;
|
|
|
+ }
|
|
|
+ heap[zz] = tmp;
|
|
|
+ }
|
|
|
+
|
|
|
+ // assert (nHeap < (MAX_ALPHA_SIZE + 2)) : nHeap;
|
|
|
+
|
|
|
+ while (nHeap > 1) {
|
|
|
+ int n1 = heap[1];
|
|
|
+ heap[1] = heap[nHeap];
|
|
|
+ nHeap--;
|
|
|
+
|
|
|
+ int yy = 0;
|
|
|
+ int zz = 1;
|
|
|
+ int tmp = heap[1];
|
|
|
+
|
|
|
+ while (true) {
|
|
|
+ yy = zz << 1;
|
|
|
+
|
|
|
+ if (yy > nHeap) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((yy < nHeap)
|
|
|
+ && (weight[heap[yy + 1]] < weight[heap[yy]])) {
|
|
|
+ yy++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (weight[tmp] < weight[heap[yy]]) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ heap[zz] = heap[yy];
|
|
|
+ zz = yy;
|
|
|
+ }
|
|
|
+
|
|
|
+ heap[zz] = tmp;
|
|
|
+
|
|
|
+ int n2 = heap[1];
|
|
|
+ heap[1] = heap[nHeap];
|
|
|
+ nHeap--;
|
|
|
+
|
|
|
+ yy = 0;
|
|
|
+ zz = 1;
|
|
|
+ tmp = heap[1];
|
|
|
+
|
|
|
+ while (true) {
|
|
|
+ yy = zz << 1;
|
|
|
+
|
|
|
+ if (yy > nHeap) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((yy < nHeap)
|
|
|
+ && (weight[heap[yy + 1]] < weight[heap[yy]])) {
|
|
|
+ yy++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (weight[tmp] < weight[heap[yy]]) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ heap[zz] = heap[yy];
|
|
|
+ zz = yy;
|
|
|
+ }
|
|
|
+
|
|
|
+ heap[zz] = tmp;
|
|
|
+ nNodes++;
|
|
|
+ parent[n1] = parent[n2] = nNodes;
|
|
|
+
|
|
|
+ final int weight_n1 = weight[n1];
|
|
|
+ final int weight_n2 = weight[n2];
|
|
|
+ weight[nNodes] = (((weight_n1 & 0xffffff00) + (weight_n2 & 0xffffff00)) | (1 + (((weight_n1 & 0x000000ff) > (weight_n2 & 0x000000ff)) ? (weight_n1 & 0x000000ff)
|
|
|
+ : (weight_n2 & 0x000000ff))));
|
|
|
+
|
|
|
+ parent[nNodes] = -1;
|
|
|
+ nHeap++;
|
|
|
+ heap[nHeap] = nNodes;
|
|
|
+
|
|
|
+ tmp = 0;
|
|
|
+ zz = nHeap;
|
|
|
+ tmp = heap[zz];
|
|
|
+ final int weight_tmp = weight[tmp];
|
|
|
+ while (weight_tmp < weight[heap[zz >> 1]]) {
|
|
|
+ heap[zz] = heap[zz >> 1];
|
|
|
+ zz >>= 1;
|
|
|
+ }
|
|
|
+ heap[zz] = tmp;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // assert (nNodes < (MAX_ALPHA_SIZE * 2)) : nNodes;
|
|
|
+
|
|
|
+ for (int i = 1; i <= alphaSize; i++) {
|
|
|
+ int j = 0;
|
|
|
+ int k = i;
|
|
|
+
|
|
|
+ for (int parent_k; (parent_k = parent[k]) >= 0;) {
|
|
|
+ k = parent_k;
|
|
|
+ j++;
|
|
|
+ }
|
|
|
+
|
|
|
+ len[i - 1] = (char) j;
|
|
|
+ if (j > maxLen) {
|
|
|
+ tooLong = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tooLong) {
|
|
|
+ for (int i = 1; i < alphaSize; i++) {
|
|
|
+ int j = weight[i] >> 8;
|
|
|
+ j = 1 + (j >> 1);
|
|
|
+ weight[i] = j << 8;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private static void hbMakeCodeLengths(final byte[] len, final int[] freq,
|
|
|
+ final Data dat, final int alphaSize, final int maxLen) {
|
|
|
+ /*
|
|
|
+ * Nodes and heap entries run from 1. Entry 0 for both the heap and
|
|
|
+ * nodes is a sentinel.
|
|
|
+ */
|
|
|
+ final int[] heap = dat.heap;
|
|
|
+ final int[] weight = dat.weight;
|
|
|
+ final int[] parent = dat.parent;
|
|
|
+
|
|
|
+ for (int i = alphaSize; --i >= 0;) {
|
|
|
+ weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (boolean tooLong = true; tooLong;) {
|
|
|
+ tooLong = false;
|
|
|
+
|
|
|
+ int nNodes = alphaSize;
|
|
|
+ int nHeap = 0;
|
|
|
+ heap[0] = 0;
|
|
|
+ weight[0] = 0;
|
|
|
+ parent[0] = -2;
|
|
|
+
|
|
|
+ for (int i = 1; i <= alphaSize; i++) {
|
|
|
+ parent[i] = -1;
|
|
|
+ nHeap++;
|
|
|
+ heap[nHeap] = i;
|
|
|
+
|
|
|
+ int zz = nHeap;
|
|
|
+ int tmp = heap[zz];
|
|
|
+ while (weight[tmp] < weight[heap[zz >> 1]]) {
|
|
|
+ heap[zz] = heap[zz >> 1];
|
|
|
+ zz >>= 1;
|
|
|
+ }
|
|
|
+ heap[zz] = tmp;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (nHeap > 1) {
|
|
|
+ int n1 = heap[1];
|
|
|
+ heap[1] = heap[nHeap];
|
|
|
+ nHeap--;
|
|
|
+
|
|
|
+ int yy = 0;
|
|
|
+ int zz = 1;
|
|
|
+ int tmp = heap[1];
|
|
|
+
|
|
|
+ while (true) {
|
|
|
+ yy = zz << 1;
|
|
|
+
|
|
|
+ if (yy > nHeap) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((yy < nHeap)
|
|
|
+ && (weight[heap[yy + 1]] < weight[heap[yy]])) {
|
|
|
+ yy++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (weight[tmp] < weight[heap[yy]]) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ heap[zz] = heap[yy];
|
|
|
+ zz = yy;
|
|
|
+ }
|
|
|
+
|
|
|
+ heap[zz] = tmp;
|
|
|
+
|
|
|
+ int n2 = heap[1];
|
|
|
+ heap[1] = heap[nHeap];
|
|
|
+ nHeap--;
|
|
|
+
|
|
|
+ yy = 0;
|
|
|
+ zz = 1;
|
|
|
+ tmp = heap[1];
|
|
|
+
|
|
|
+ while (true) {
|
|
|
+ yy = zz << 1;
|
|
|
+
|
|
|
+ if (yy > nHeap) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((yy < nHeap)
|
|
|
+ && (weight[heap[yy + 1]] < weight[heap[yy]])) {
|
|
|
+ yy++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (weight[tmp] < weight[heap[yy]]) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ heap[zz] = heap[yy];
|
|
|
+ zz = yy;
|
|
|
+ }
|
|
|
+
|
|
|
+ heap[zz] = tmp;
|
|
|
+ nNodes++;
|
|
|
+ parent[n1] = parent[n2] = nNodes;
|
|
|
+
|
|
|
+ final int weight_n1 = weight[n1];
|
|
|
+ final int weight_n2 = weight[n2];
|
|
|
+ weight[nNodes] = ((weight_n1 & 0xffffff00) + (weight_n2 & 0xffffff00))
|
|
|
+ | (1 + (((weight_n1 & 0x000000ff) > (weight_n2 & 0x000000ff)) ? (weight_n1 & 0x000000ff)
|
|
|
+ : (weight_n2 & 0x000000ff)));
|
|
|
+
|
|
|
+ parent[nNodes] = -1;
|
|
|
+ nHeap++;
|
|
|
+ heap[nHeap] = nNodes;
|
|
|
+
|
|
|
+ tmp = 0;
|
|
|
+ zz = nHeap;
|
|
|
+ tmp = heap[zz];
|
|
|
+ final int weight_tmp = weight[tmp];
|
|
|
+ while (weight_tmp < weight[heap[zz >> 1]]) {
|
|
|
+ heap[zz] = heap[zz >> 1];
|
|
|
+ zz >>= 1;
|
|
|
+ }
|
|
|
+ heap[zz] = tmp;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 1; i <= alphaSize; i++) {
|
|
|
+ int j = 0;
|
|
|
+ int k = i;
|
|
|
+
|
|
|
+ for (int parent_k; (parent_k = parent[k]) >= 0;) {
|
|
|
+ k = parent_k;
|
|
|
+ j++;
|
|
|
+ }
|
|
|
+
|
|
|
+ len[i - 1] = (byte) j;
|
|
|
+ if (j > maxLen) {
|
|
|
+ tooLong = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tooLong) {
|
|
|
+ for (int i = 1; i < alphaSize; i++) {
|
|
|
+ int j = weight[i] >> 8;
|
|
|
+ j = 1 + (j >> 1);
|
|
|
+ weight[i] = j << 8;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Index of the last char in the block, so the block size == last + 1.
|
|
|
+ */
|
|
|
+ private int last;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Index in fmap[] of original string after sorting.
|
|
|
+ */
|
|
|
+ private int origPtr;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Always: in the range 0 .. 9. The current block size is 100000 * this
|
|
|
+ * number.
|
|
|
+ */
|
|
|
+ private final int blockSize100k;
|
|
|
+
|
|
|
+ private boolean blockRandomised;
|
|
|
+
|
|
|
+ private int bsBuff;
|
|
|
+ private int bsLive;
|
|
|
+ private final CRC crc = new CRC();
|
|
|
+
|
|
|
+ private int nInUse;
|
|
|
+
|
|
|
+ private int nMTF;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Used when sorting. If too many long comparisons happen, we stop sorting,
|
|
|
+ * randomise the block slightly, and try again.
|
|
|
+ */
|
|
|
+ private int workDone;
|
|
|
+ private int workLimit;
|
|
|
+ private boolean firstAttempt;
|
|
|
+
|
|
|
+ private int currentChar = -1;
|
|
|
+ private int runLength = 0;
|
|
|
+
|
|
|
+ private int blockCRC;
|
|
|
+ private int combinedCRC;
|
|
|
+ private int allowableBlockSize;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * All memory intensive stuff.
|
|
|
+ */
|
|
|
+ private CBZip2OutputStream.Data data;
|
|
|
+
|
|
|
+ private OutputStream out;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Chooses a blocksize based on the given length of the data to compress.
|
|
|
+ *
|
|
|
+ * @return The blocksize, between {@link #MIN_BLOCKSIZE} and
|
|
|
+ * {@link #MAX_BLOCKSIZE} both inclusive. For a negative
|
|
|
+ * <tt>inputLength</tt> this method returns <tt>MAX_BLOCKSIZE</tt>
|
|
|
+ * always.
|
|
|
+ *
|
|
|
+ * @param inputLength
|
|
|
+ * The length of the data which will be compressed by
|
|
|
+ * <tt>CBZip2OutputStream</tt>.
|
|
|
+ */
|
|
|
+ public static int chooseBlockSize(long inputLength) {
|
|
|
+ return (inputLength > 0) ? (int) Math
|
|
|
+ .min((inputLength / 132000) + 1, 9) : MAX_BLOCKSIZE;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Constructs a new <tt>CBZip2OutputStream</tt> with a blocksize of 900k.
|
|
|
+ *
|
|
|
+ * <p>
|
|
|
+ * <b>Attention: </b>The caller is resonsible to write the two BZip2 magic
|
|
|
+ * bytes <tt>"BZ"</tt> to the specified stream prior to calling this
|
|
|
+ * constructor.
|
|
|
+ * </p>
|
|
|
+ *
|
|
|
+ * @param out *
|
|
|
+ * the destination stream.
|
|
|
+ *
|
|
|
+ * @throws IOException
|
|
|
+ * if an I/O error occurs in the specified stream.
|
|
|
+ * @throws NullPointerException
|
|
|
+ * if <code>out == null</code>.
|
|
|
+ */
|
|
|
+ public CBZip2OutputStream(final OutputStream out) throws IOException {
|
|
|
+ this(out, MAX_BLOCKSIZE);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Constructs a new <tt>CBZip2OutputStream</tt> with specified blocksize.
|
|
|
+ *
|
|
|
+ * <p>
|
|
|
+ * <b>Attention: </b>The caller is resonsible to write the two BZip2 magic
|
|
|
+ * bytes <tt>"BZ"</tt> to the specified stream prior to calling this
|
|
|
+ * constructor.
|
|
|
+ * </p>
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * @param out
|
|
|
+ * the destination stream.
|
|
|
+ * @param blockSize
|
|
|
+ * the blockSize as 100k units.
|
|
|
+ *
|
|
|
+ * @throws IOException
|
|
|
+ * if an I/O error occurs in the specified stream.
|
|
|
+ * @throws IllegalArgumentException
|
|
|
+ * if <code>(blockSize < 1) || (blockSize > 9)</code>.
|
|
|
+ * @throws NullPointerException
|
|
|
+ * if <code>out == null</code>.
|
|
|
+ *
|
|
|
+ * @see #MIN_BLOCKSIZE
|
|
|
+ * @see #MAX_BLOCKSIZE
|
|
|
+ */
|
|
|
+ public CBZip2OutputStream(final OutputStream out, final int blockSize)
|
|
|
+ throws IOException {
|
|
|
+ super();
|
|
|
+
|
|
|
+ if (blockSize < 1) {
|
|
|
+ throw new IllegalArgumentException("blockSize(" + blockSize
|
|
|
+ + ") < 1");
|
|
|
+ }
|
|
|
+ if (blockSize > 9) {
|
|
|
+ throw new IllegalArgumentException("blockSize(" + blockSize
|
|
|
+ + ") > 9");
|
|
|
+ }
|
|
|
+
|
|
|
+ this.blockSize100k = blockSize;
|
|
|
+ this.out = out;
|
|
|
+ init();
|
|
|
+ }
|
|
|
+
|
|
|
+ public void write(final int b) throws IOException {
|
|
|
+ if (this.out != null) {
|
|
|
+ write0(b);
|
|
|
+ } else {
|
|
|
+ throw new IOException("closed");
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private void writeRun() throws IOException {
|
|
|
+ final int lastShadow = this.last;
|
|
|
+
|
|
|
+ if (lastShadow < this.allowableBlockSize) {
|
|
|
+ final int currentCharShadow = this.currentChar;
|
|
|
+ final Data dataShadow = this.data;
|
|
|
+ dataShadow.inUse[currentCharShadow] = true;
|
|
|
+ final byte ch = (byte) currentCharShadow;
|
|
|
+
|
|
|
+ int runLengthShadow = this.runLength;
|
|
|
+ this.crc.updateCRC(currentCharShadow, runLengthShadow);
|
|
|
+
|
|
|
+ switch (runLengthShadow) {
|
|
|
+ case 1:
|
|
|
+ dataShadow.block[lastShadow + 2] = ch;
|
|
|
+ this.last = lastShadow + 1;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case 2:
|
|
|
+ dataShadow.block[lastShadow + 2] = ch;
|
|
|
+ dataShadow.block[lastShadow + 3] = ch;
|
|
|
+ this.last = lastShadow + 2;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case 3: {
|
|
|
+ final byte[] block = dataShadow.block;
|
|
|
+ block[lastShadow + 2] = ch;
|
|
|
+ block[lastShadow + 3] = ch;
|
|
|
+ block[lastShadow + 4] = ch;
|
|
|
+ this.last = lastShadow + 3;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+
|
|
|
+ default: {
|
|
|
+ runLengthShadow -= 4;
|
|
|
+ dataShadow.inUse[runLengthShadow] = true;
|
|
|
+ final byte[] block = dataShadow.block;
|
|
|
+ block[lastShadow + 2] = ch;
|
|
|
+ block[lastShadow + 3] = ch;
|
|
|
+ block[lastShadow + 4] = ch;
|
|
|
+ block[lastShadow + 5] = ch;
|
|
|
+ block[lastShadow + 6] = (byte) runLengthShadow;
|
|
|
+ this.last = lastShadow + 5;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ endBlock();
|
|
|
+ initBlock();
|
|
|
+ writeRun();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Overriden to close the stream.
|
|
|
+ */
|
|
|
+ protected void finalize() throws Throwable {
|
|
|
+ close();
|
|
|
+ super.finalize();
|
|
|
+ }
|
|
|
+
|
|
|
+ public void close() throws IOException {
|
|
|
+ OutputStream outShadow = this.out;
|
|
|
+ if (outShadow != null) {
|
|
|
+ try {
|
|
|
+ if (this.runLength > 0) {
|
|
|
+ writeRun();
|
|
|
+ }
|
|
|
+ this.currentChar = -1;
|
|
|
+ endBlock();
|
|
|
+ endCompression();
|
|
|
+ outShadow.close();
|
|
|
+ } finally {
|
|
|
+ this.out = null;
|
|
|
+ this.data = null;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ public void flush() throws IOException {
|
|
|
+ OutputStream outShadow = this.out;
|
|
|
+ if (outShadow != null) {
|
|
|
+ outShadow.flush();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private void init() throws IOException {
|
|
|
+ // write magic: done by caller who created this stream
|
|
|
+ // this.out.write('B');
|
|
|
+ // this.out.write('Z');
|
|
|
+
|
|
|
+ this.data = new Data(this.blockSize100k);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Write `magic' bytes h indicating file-format == huffmanised, followed
|
|
|
+ * by a digit indicating blockSize100k.
|
|
|
+ */
|
|
|
+ bsPutUByte('h');
|
|
|
+ bsPutUByte('0' + this.blockSize100k);
|
|
|
+
|
|
|
+ this.combinedCRC = 0;
|
|
|
+ initBlock();
|
|
|
+ }
|
|
|
+
|
|
|
+ private void initBlock() {
|
|
|
+ // blockNo++;
|
|
|
+ this.crc.initialiseCRC();
|
|
|
+ this.last = -1;
|
|
|
+ // ch = 0;
|
|
|
+
|
|
|
+ boolean[] inUse = this.data.inUse;
|
|
|
+ for (int i = 256; --i >= 0;) {
|
|
|
+ inUse[i] = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* 20 is just a paranoia constant */
|
|
|
+ this.allowableBlockSize = (this.blockSize100k * BZip2Constants.baseBlockSize) - 20;
|
|
|
+ }
|
|
|
+
|
|
|
+ private void endBlock() throws IOException {
|
|
|
+ this.blockCRC = this.crc.getFinalCRC();
|
|
|
+ this.combinedCRC = (this.combinedCRC << 1) | (this.combinedCRC >>> 31);
|
|
|
+ this.combinedCRC ^= this.blockCRC;
|
|
|
+
|
|
|
+ // empty block at end of file
|
|
|
+ if (this.last == -1) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* sort the block and establish posn of original string */
|
|
|
+ blockSort();
|
|
|
+
|
|
|
+ /*
|
|
|
+ * A 6-byte block header, the value chosen arbitrarily as 0x314159265359
|
|
|
+ * :-). A 32 bit value does not really give a strong enough guarantee
|
|
|
+ * that the value will not appear by chance in the compressed
|
|
|
+ * datastream. Worst-case probability of this event, for a 900k block,
|
|
|
+ * is about 2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48
|
|
|
+ * bits. For a compressed file of size 100Gb -- about 100000 blocks --
|
|
|
+ * only a 48-bit marker will do. NB: normal compression/ decompression
|
|
|
+ * donot rely on these statistical properties. They are only important
|
|
|
+ * when trying to recover blocks from damaged files.
|
|
|
+ */
|
|
|
+ bsPutUByte(0x31);
|
|
|
+ bsPutUByte(0x41);
|
|
|
+ bsPutUByte(0x59);
|
|
|
+ bsPutUByte(0x26);
|
|
|
+ bsPutUByte(0x53);
|
|
|
+ bsPutUByte(0x59);
|
|
|
+
|
|
|
+ /* Now the block's CRC, so it is in a known place. */
|
|
|
+ bsPutInt(this.blockCRC);
|
|
|
+
|
|
|
+ /* Now a single bit indicating randomisation. */
|
|
|
+ if (this.blockRandomised) {
|
|
|
+ bsW(1, 1);
|
|
|
+ } else {
|
|
|
+ bsW(1, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Finally, block's contents proper. */
|
|
|
+ moveToFrontCodeAndSend();
|
|
|
+ }
|
|
|
+
|
|
|
+ private void endCompression() throws IOException {
|
|
|
+ /*
|
|
|
+ * Now another magic 48-bit number, 0x177245385090, to indicate the end
|
|
|
+ * of the last block. (sqrt(pi), if you want to know. I did want to use
|
|
|
+ * e, but it contains too much repetition -- 27 18 28 18 28 46 -- for me
|
|
|
+ * to feel statistically comfortable. Call me paranoid.)
|
|
|
+ */
|
|
|
+ bsPutUByte(0x17);
|
|
|
+ bsPutUByte(0x72);
|
|
|
+ bsPutUByte(0x45);
|
|
|
+ bsPutUByte(0x38);
|
|
|
+ bsPutUByte(0x50);
|
|
|
+ bsPutUByte(0x90);
|
|
|
+
|
|
|
+ bsPutInt(this.combinedCRC);
|
|
|
+ bsFinishedWithStream();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the blocksize parameter specified at construction time.
|
|
|
+ */
|
|
|
+ public final int getBlockSize() {
|
|
|
+ return this.blockSize100k;
|
|
|
+ }
|
|
|
+
|
|
|
+ public void write(final byte[] buf, int offs, final int len)
|
|
|
+ throws IOException {
|
|
|
+ if (offs < 0) {
|
|
|
+ throw new IndexOutOfBoundsException("offs(" + offs + ") < 0.");
|
|
|
+ }
|
|
|
+ if (len < 0) {
|
|
|
+ throw new IndexOutOfBoundsException("len(" + len + ") < 0.");
|
|
|
+ }
|
|
|
+ if (offs + len > buf.length) {
|
|
|
+ throw new IndexOutOfBoundsException("offs(" + offs + ") + len("
|
|
|
+ + len + ") > buf.length(" + buf.length + ").");
|
|
|
+ }
|
|
|
+ if (this.out == null) {
|
|
|
+ throw new IOException("stream closed");
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int hi = offs + len; offs < hi;) {
|
|
|
+ write0(buf[offs++]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private void write0(int b) throws IOException {
|
|
|
+ if (this.currentChar != -1) {
|
|
|
+ b &= 0xff;
|
|
|
+ if (this.currentChar == b) {
|
|
|
+ if (++this.runLength > 254) {
|
|
|
+ writeRun();
|
|
|
+ this.currentChar = -1;
|
|
|
+ this.runLength = 0;
|
|
|
+ }
|
|
|
+ // else nothing to do
|
|
|
+ } else {
|
|
|
+ writeRun();
|
|
|
+ this.runLength = 1;
|
|
|
+ this.currentChar = b;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ this.currentChar = b & 0xff;
|
|
|
+ this.runLength++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private static void hbAssignCodes(final int[] code, final byte[] length,
|
|
|
+ final int minLen, final int maxLen, final int alphaSize) {
|
|
|
+ int vec = 0;
|
|
|
+ for (int n = minLen; n <= maxLen; n++) {
|
|
|
+ for (int i = 0; i < alphaSize; i++) {
|
|
|
+ if ((length[i] & 0xff) == n) {
|
|
|
+ code[i] = vec;
|
|
|
+ vec++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ vec <<= 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private void bsFinishedWithStream() throws IOException {
|
|
|
+ while (this.bsLive > 0) {
|
|
|
+ int ch = this.bsBuff >> 24;
|
|
|
+ this.out.write(ch); // write 8-bit
|
|
|
+ this.bsBuff <<= 8;
|
|
|
+ this.bsLive -= 8;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private void bsW(final int n, final int v) throws IOException {
|
|
|
+ final OutputStream outShadow = this.out;
|
|
|
+ int bsLiveShadow = this.bsLive;
|
|
|
+ int bsBuffShadow = this.bsBuff;
|
|
|
+
|
|
|
+ while (bsLiveShadow >= 8) {
|
|
|
+ outShadow.write(bsBuffShadow >> 24); // write 8-bit
|
|
|
+ bsBuffShadow <<= 8;
|
|
|
+ bsLiveShadow -= 8;
|
|
|
+ }
|
|
|
+
|
|
|
+ this.bsBuff = bsBuffShadow | (v << (32 - bsLiveShadow - n));
|
|
|
+ this.bsLive = bsLiveShadow + n;
|
|
|
+ }
|
|
|
+
|
|
|
+ private void bsPutUByte(final int c) throws IOException {
|
|
|
+ bsW(8, c);
|
|
|
+ }
|
|
|
+
|
|
|
+ private void bsPutInt(final int u) throws IOException {
|
|
|
+ bsW(8, (u >> 24) & 0xff);
|
|
|
+ bsW(8, (u >> 16) & 0xff);
|
|
|
+ bsW(8, (u >> 8) & 0xff);
|
|
|
+ bsW(8, u & 0xff);
|
|
|
+ }
|
|
|
+
|
|
|
+ private void sendMTFValues() throws IOException {
|
|
|
+ final byte[][] len = this.data.sendMTFValues_len;
|
|
|
+ final int alphaSize = this.nInUse + 2;
|
|
|
+
|
|
|
+ for (int t = N_GROUPS; --t >= 0;) {
|
|
|
+ byte[] len_t = len[t];
|
|
|
+ for (int v = alphaSize; --v >= 0;) {
|
|
|
+ len_t[v] = GREATER_ICOST;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Decide how many coding tables to use */
|
|
|
+ // assert (this.nMTF > 0) : this.nMTF;
|
|
|
+ final int nGroups = (this.nMTF < 200) ? 2 : (this.nMTF < 600) ? 3
|
|
|
+ : (this.nMTF < 1200) ? 4 : (this.nMTF < 2400) ? 5 : 6;
|
|
|
+
|
|
|
+ /* Generate an initial set of coding tables */
|
|
|
+ sendMTFValues0(nGroups, alphaSize);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Iterate up to N_ITERS times to improve the tables.
|
|
|
+ */
|
|
|
+ final int nSelectors = sendMTFValues1(nGroups, alphaSize);
|
|
|
+
|
|
|
+ /* Compute MTF values for the selectors. */
|
|
|
+ sendMTFValues2(nGroups, nSelectors);
|
|
|
+
|
|
|
+ /* Assign actual codes for the tables. */
|
|
|
+ sendMTFValues3(nGroups, alphaSize);
|
|
|
+
|
|
|
+ /* Transmit the mapping table. */
|
|
|
+ sendMTFValues4();
|
|
|
+
|
|
|
+ /* Now the selectors. */
|
|
|
+ sendMTFValues5(nGroups, nSelectors);
|
|
|
+
|
|
|
+ /* Now the coding tables. */
|
|
|
+ sendMTFValues6(nGroups, alphaSize);
|
|
|
+
|
|
|
+ /* And finally, the block data proper */
|
|
|
+ sendMTFValues7(nSelectors);
|
|
|
+ }
|
|
|
+
|
|
|
+ private void sendMTFValues0(final int nGroups, final int alphaSize) {
|
|
|
+ final byte[][] len = this.data.sendMTFValues_len;
|
|
|
+ final int[] mtfFreq = this.data.mtfFreq;
|
|
|
+
|
|
|
+ int remF = this.nMTF;
|
|
|
+ int gs = 0;
|
|
|
+
|
|
|
+ for (int nPart = nGroups; nPart > 0; nPart--) {
|
|
|
+ final int tFreq = remF / nPart;
|
|
|
+ int ge = gs - 1;
|
|
|
+ int aFreq = 0;
|
|
|
+
|
|
|
+ for (final int a = alphaSize - 1; (aFreq < tFreq) && (ge < a);) {
|
|
|
+ aFreq += mtfFreq[++ge];
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((ge > gs) && (nPart != nGroups) && (nPart != 1)
|
|
|
+ && (((nGroups - nPart) & 1) != 0)) {
|
|
|
+ aFreq -= mtfFreq[ge--];
|
|
|
+ }
|
|
|
+
|
|
|
+ final byte[] len_np = len[nPart - 1];
|
|
|
+ for (int v = alphaSize; --v >= 0;) {
|
|
|
+ if ((v >= gs) && (v <= ge)) {
|
|
|
+ len_np[v] = LESSER_ICOST;
|
|
|
+ } else {
|
|
|
+ len_np[v] = GREATER_ICOST;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ gs = ge + 1;
|
|
|
+ remF -= aFreq;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private int sendMTFValues1(final int nGroups, final int alphaSize) {
|
|
|
+ final Data dataShadow = this.data;
|
|
|
+ final int[][] rfreq = dataShadow.sendMTFValues_rfreq;
|
|
|
+ final int[] fave = dataShadow.sendMTFValues_fave;
|
|
|
+ final short[] cost = dataShadow.sendMTFValues_cost;
|
|
|
+ final char[] sfmap = dataShadow.sfmap;
|
|
|
+ final byte[] selector = dataShadow.selector;
|
|
|
+ final byte[][] len = dataShadow.sendMTFValues_len;
|
|
|
+ final byte[] len_0 = len[0];
|
|
|
+ final byte[] len_1 = len[1];
|
|
|
+ final byte[] len_2 = len[2];
|
|
|
+ final byte[] len_3 = len[3];
|
|
|
+ final byte[] len_4 = len[4];
|
|
|
+ final byte[] len_5 = len[5];
|
|
|
+ final int nMTFShadow = this.nMTF;
|
|
|
+
|
|
|
+ int nSelectors = 0;
|
|
|
+
|
|
|
+ for (int iter = 0; iter < N_ITERS; iter++) {
|
|
|
+ for (int t = nGroups; --t >= 0;) {
|
|
|
+ fave[t] = 0;
|
|
|
+ int[] rfreqt = rfreq[t];
|
|
|
+ for (int i = alphaSize; --i >= 0;) {
|
|
|
+ rfreqt[i] = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ nSelectors = 0;
|
|
|
+
|
|
|
+ for (int gs = 0; gs < this.nMTF;) {
|
|
|
+ /* Set group start & end marks. */
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Calculate the cost of this group as coded by each of the
|
|
|
+ * coding tables.
|
|
|
+ */
|
|
|
+
|
|
|
+ final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1);
|
|
|
+
|
|
|
+ if (nGroups == N_GROUPS) {
|
|
|
+ // unrolled version of the else-block
|
|
|
+
|
|
|
+ short cost0 = 0;
|
|
|
+ short cost1 = 0;
|
|
|
+ short cost2 = 0;
|
|
|
+ short cost3 = 0;
|
|
|
+ short cost4 = 0;
|
|
|
+ short cost5 = 0;
|
|
|
+
|
|
|
+ for (int i = gs; i <= ge; i++) {
|
|
|
+ final int icv = sfmap[i];
|
|
|
+ cost0 += len_0[icv] & 0xff;
|
|
|
+ cost1 += len_1[icv] & 0xff;
|
|
|
+ cost2 += len_2[icv] & 0xff;
|
|
|
+ cost3 += len_3[icv] & 0xff;
|
|
|
+ cost4 += len_4[icv] & 0xff;
|
|
|
+ cost5 += len_5[icv] & 0xff;
|
|
|
+ }
|
|
|
+
|
|
|
+ cost[0] = cost0;
|
|
|
+ cost[1] = cost1;
|
|
|
+ cost[2] = cost2;
|
|
|
+ cost[3] = cost3;
|
|
|
+ cost[4] = cost4;
|
|
|
+ cost[5] = cost5;
|
|
|
+
|
|
|
+ } else {
|
|
|
+ for (int t = nGroups; --t >= 0;) {
|
|
|
+ cost[t] = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = gs; i <= ge; i++) {
|
|
|
+ final int icv = sfmap[i];
|
|
|
+ for (int t = nGroups; --t >= 0;) {
|
|
|
+ cost[t] += len[t][icv] & 0xff;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Find the coding table which is best for this group, and
|
|
|
+ * record its identity in the selector table.
|
|
|
+ */
|
|
|
+ int bt = -1;
|
|
|
+ for (int t = nGroups, bc = 999999999; --t >= 0;) {
|
|
|
+ final int cost_t = cost[t];
|
|
|
+ if (cost_t < bc) {
|
|
|
+ bc = cost_t;
|
|
|
+ bt = t;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ fave[bt]++;
|
|
|
+ selector[nSelectors] = (byte) bt;
|
|
|
+ nSelectors++;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Increment the symbol frequencies for the selected table.
|
|
|
+ */
|
|
|
+ final int[] rfreq_bt = rfreq[bt];
|
|
|
+ for (int i = gs; i <= ge; i++) {
|
|
|
+ rfreq_bt[sfmap[i]]++;
|
|
|
+ }
|
|
|
+
|
|
|
+ gs = ge + 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Recompute the tables based on the accumulated frequencies.
|
|
|
+ */
|
|
|
+ for (int t = 0; t < nGroups; t++) {
|
|
|
+ hbMakeCodeLengths(len[t], rfreq[t], this.data, alphaSize, 20);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return nSelectors;
|
|
|
+ }
|
|
|
+
|
|
|
+ private void sendMTFValues2(final int nGroups, final int nSelectors) {
|
|
|
+ // assert (nGroups < 8) : nGroups;
|
|
|
+
|
|
|
+ final Data dataShadow = this.data;
|
|
|
+ byte[] pos = dataShadow.sendMTFValues2_pos;
|
|
|
+
|
|
|
+ for (int i = nGroups; --i >= 0;) {
|
|
|
+ pos[i] = (byte) i;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < nSelectors; i++) {
|
|
|
+ final byte ll_i = dataShadow.selector[i];
|
|
|
+ byte tmp = pos[0];
|
|
|
+ int j = 0;
|
|
|
+
|
|
|
+ while (ll_i != tmp) {
|
|
|
+ j++;
|
|
|
+ byte tmp2 = tmp;
|
|
|
+ tmp = pos[j];
|
|
|
+ pos[j] = tmp2;
|
|
|
+ }
|
|
|
+
|
|
|
+ pos[0] = tmp;
|
|
|
+ dataShadow.selectorMtf[i] = (byte) j;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private void sendMTFValues3(final int nGroups, final int alphaSize) {
|
|
|
+ int[][] code = this.data.sendMTFValues_code;
|
|
|
+ byte[][] len = this.data.sendMTFValues_len;
|
|
|
+
|
|
|
+ for (int t = 0; t < nGroups; t++) {
|
|
|
+ int minLen = 32;
|
|
|
+ int maxLen = 0;
|
|
|
+ final byte[] len_t = len[t];
|
|
|
+ for (int i = alphaSize; --i >= 0;) {
|
|
|
+ final int l = len_t[i] & 0xff;
|
|
|
+ if (l > maxLen) {
|
|
|
+ maxLen = l;
|
|
|
+ }
|
|
|
+ if (l < minLen) {
|
|
|
+ minLen = l;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // assert (maxLen <= 20) : maxLen;
|
|
|
+ // assert (minLen >= 1) : minLen;
|
|
|
+
|
|
|
+ hbAssignCodes(code[t], len[t], minLen, maxLen, alphaSize);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private void sendMTFValues4() throws IOException {
|
|
|
+ final boolean[] inUse = this.data.inUse;
|
|
|
+ final boolean[] inUse16 = this.data.sentMTFValues4_inUse16;
|
|
|
+
|
|
|
+ for (int i = 16; --i >= 0;) {
|
|
|
+ inUse16[i] = false;
|
|
|
+ final int i16 = i * 16;
|
|
|
+ for (int j = 16; --j >= 0;) {
|
|
|
+ if (inUse[i16 + j]) {
|
|
|
+ inUse16[i] = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < 16; i++) {
|
|
|
+ bsW(1, inUse16[i] ? 1 : 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ final OutputStream outShadow = this.out;
|
|
|
+ int bsLiveShadow = this.bsLive;
|
|
|
+ int bsBuffShadow = this.bsBuff;
|
|
|
+
|
|
|
+ for (int i = 0; i < 16; i++) {
|
|
|
+ if (inUse16[i]) {
|
|
|
+ final int i16 = i * 16;
|
|
|
+ for (int j = 0; j < 16; j++) {
|
|
|
+ // inlined: bsW(1, inUse[i16 + j] ? 1 : 0);
|
|
|
+ while (bsLiveShadow >= 8) {
|
|
|
+ outShadow.write(bsBuffShadow >> 24); // write 8-bit
|
|
|
+ bsBuffShadow <<= 8;
|
|
|
+ bsLiveShadow -= 8;
|
|
|
+ }
|
|
|
+ if (inUse[i16 + j]) {
|
|
|
+ bsBuffShadow |= 1 << (32 - bsLiveShadow - 1);
|
|
|
+ }
|
|
|
+ bsLiveShadow++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ this.bsBuff = bsBuffShadow;
|
|
|
+ this.bsLive = bsLiveShadow;
|
|
|
+ }
|
|
|
+
|
|
|
+ private void sendMTFValues5(final int nGroups, final int nSelectors)
|
|
|
+ throws IOException {
|
|
|
+ bsW(3, nGroups);
|
|
|
+ bsW(15, nSelectors);
|
|
|
+
|
|
|
+ final OutputStream outShadow = this.out;
|
|
|
+ final byte[] selectorMtf = this.data.selectorMtf;
|
|
|
+
|
|
|
+ int bsLiveShadow = this.bsLive;
|
|
|
+ int bsBuffShadow = this.bsBuff;
|
|
|
+
|
|
|
+ for (int i = 0; i < nSelectors; i++) {
|
|
|
+ for (int j = 0, hj = selectorMtf[i] & 0xff; j < hj; j++) {
|
|
|
+ // inlined: bsW(1, 1);
|
|
|
+ while (bsLiveShadow >= 8) {
|
|
|
+ outShadow.write(bsBuffShadow >> 24);
|
|
|
+ bsBuffShadow <<= 8;
|
|
|
+ bsLiveShadow -= 8;
|
|
|
+ }
|
|
|
+ bsBuffShadow |= 1 << (32 - bsLiveShadow - 1);
|
|
|
+ bsLiveShadow++;
|
|
|
+ }
|
|
|
+
|
|
|
+ // inlined: bsW(1, 0);
|
|
|
+ while (bsLiveShadow >= 8) {
|
|
|
+ outShadow.write(bsBuffShadow >> 24);
|
|
|
+ bsBuffShadow <<= 8;
|
|
|
+ bsLiveShadow -= 8;
|
|
|
+ }
|
|
|
+ // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1);
|
|
|
+ bsLiveShadow++;
|
|
|
+ }
|
|
|
+
|
|
|
+ this.bsBuff = bsBuffShadow;
|
|
|
+ this.bsLive = bsLiveShadow;
|
|
|
+ }
|
|
|
+
|
|
|
+ private void sendMTFValues6(final int nGroups, final int alphaSize)
|
|
|
+ throws IOException {
|
|
|
+ final byte[][] len = this.data.sendMTFValues_len;
|
|
|
+ final OutputStream outShadow = this.out;
|
|
|
+
|
|
|
+ int bsLiveShadow = this.bsLive;
|
|
|
+ int bsBuffShadow = this.bsBuff;
|
|
|
+
|
|
|
+ for (int t = 0; t < nGroups; t++) {
|
|
|
+ byte[] len_t = len[t];
|
|
|
+ int curr = len_t[0] & 0xff;
|
|
|
+
|
|
|
+ // inlined: bsW(5, curr);
|
|
|
+ while (bsLiveShadow >= 8) {
|
|
|
+ outShadow.write(bsBuffShadow >> 24); // write 8-bit
|
|
|
+ bsBuffShadow <<= 8;
|
|
|
+ bsLiveShadow -= 8;
|
|
|
+ }
|
|
|
+ bsBuffShadow |= curr << (32 - bsLiveShadow - 5);
|
|
|
+ bsLiveShadow += 5;
|
|
|
+
|
|
|
+ for (int i = 0; i < alphaSize; i++) {
|
|
|
+ int lti = len_t[i] & 0xff;
|
|
|
+ while (curr < lti) {
|
|
|
+ // inlined: bsW(2, 2);
|
|
|
+ while (bsLiveShadow >= 8) {
|
|
|
+ outShadow.write(bsBuffShadow >> 24); // write 8-bit
|
|
|
+ bsBuffShadow <<= 8;
|
|
|
+ bsLiveShadow -= 8;
|
|
|
+ }
|
|
|
+ bsBuffShadow |= 2 << (32 - bsLiveShadow - 2);
|
|
|
+ bsLiveShadow += 2;
|
|
|
+
|
|
|
+ curr++; /* 10 */
|
|
|
+ }
|
|
|
+
|
|
|
+ while (curr > lti) {
|
|
|
+ // inlined: bsW(2, 3);
|
|
|
+ while (bsLiveShadow >= 8) {
|
|
|
+ outShadow.write(bsBuffShadow >> 24); // write 8-bit
|
|
|
+ bsBuffShadow <<= 8;
|
|
|
+ bsLiveShadow -= 8;
|
|
|
+ }
|
|
|
+ bsBuffShadow |= 3 << (32 - bsLiveShadow - 2);
|
|
|
+ bsLiveShadow += 2;
|
|
|
+
|
|
|
+ curr--; /* 11 */
|
|
|
+ }
|
|
|
+
|
|
|
+ // inlined: bsW(1, 0);
|
|
|
+ while (bsLiveShadow >= 8) {
|
|
|
+ outShadow.write(bsBuffShadow >> 24); // write 8-bit
|
|
|
+ bsBuffShadow <<= 8;
|
|
|
+ bsLiveShadow -= 8;
|
|
|
+ }
|
|
|
+ // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1);
|
|
|
+ bsLiveShadow++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ this.bsBuff = bsBuffShadow;
|
|
|
+ this.bsLive = bsLiveShadow;
|
|
|
+ }
|
|
|
+
|
|
|
+ private void sendMTFValues7(final int nSelectors) throws IOException {
|
|
|
+ final Data dataShadow = this.data;
|
|
|
+ final byte[][] len = dataShadow.sendMTFValues_len;
|
|
|
+ final int[][] code = dataShadow.sendMTFValues_code;
|
|
|
+ final OutputStream outShadow = this.out;
|
|
|
+ final byte[] selector = dataShadow.selector;
|
|
|
+ final char[] sfmap = dataShadow.sfmap;
|
|
|
+ final int nMTFShadow = this.nMTF;
|
|
|
+
|
|
|
+ int selCtr = 0;
|
|
|
+
|
|
|
+ int bsLiveShadow = this.bsLive;
|
|
|
+ int bsBuffShadow = this.bsBuff;
|
|
|
+
|
|
|
+ for (int gs = 0; gs < nMTFShadow;) {
|
|
|
+ final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1);
|
|
|
+ final int selector_selCtr = selector[selCtr] & 0xff;
|
|
|
+ final int[] code_selCtr = code[selector_selCtr];
|
|
|
+ final byte[] len_selCtr = len[selector_selCtr];
|
|
|
+
|
|
|
+ while (gs <= ge) {
|
|
|
+ final int sfmap_i = sfmap[gs];
|
|
|
+
|
|
|
+ //
|
|
|
+ // inlined: bsW(len_selCtr[sfmap_i] & 0xff,
|
|
|
+ // code_selCtr[sfmap_i]);
|
|
|
+ //
|
|
|
+ while (bsLiveShadow >= 8) {
|
|
|
+ outShadow.write(bsBuffShadow >> 24);
|
|
|
+ bsBuffShadow <<= 8;
|
|
|
+ bsLiveShadow -= 8;
|
|
|
+ }
|
|
|
+ final int n = len_selCtr[sfmap_i] & 0xFF;
|
|
|
+ bsBuffShadow |= code_selCtr[sfmap_i] << (32 - bsLiveShadow - n);
|
|
|
+ bsLiveShadow += n;
|
|
|
+
|
|
|
+ gs++;
|
|
|
+ }
|
|
|
+
|
|
|
+ gs = ge + 1;
|
|
|
+ selCtr++;
|
|
|
+ }
|
|
|
+
|
|
|
+ this.bsBuff = bsBuffShadow;
|
|
|
+ this.bsLive = bsLiveShadow;
|
|
|
+ }
|
|
|
+
|
|
|
+ private void moveToFrontCodeAndSend() throws IOException {
|
|
|
+ bsW(24, this.origPtr);
|
|
|
+ generateMTFValues();
|
|
|
+ sendMTFValues();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This is the most hammered method of this class.
|
|
|
+ *
|
|
|
+ * <p>
|
|
|
+ * This is the version using unrolled loops. Normally I never use such ones
|
|
|
+ * in Java code. The unrolling has shown a noticable performance improvement
|
|
|
+ * on JRE 1.4.2 (Linux i586 / HotSpot Client). Of course it depends on the
|
|
|
+ * JIT compiler of the vm.
|
|
|
+ * </p>
|
|
|
+ */
|
|
|
+ private boolean mainSimpleSort(final Data dataShadow, final int lo,
|
|
|
+ final int hi, final int d) {
|
|
|
+ final int bigN = hi - lo + 1;
|
|
|
+ if (bigN < 2) {
|
|
|
+ return this.firstAttempt && (this.workDone > this.workLimit);
|
|
|
+ }
|
|
|
+
|
|
|
+ int hp = 0;
|
|
|
+ while (INCS[hp] < bigN) {
|
|
|
+ hp++;
|
|
|
+ }
|
|
|
+
|
|
|
+ final int[] fmap = dataShadow.fmap;
|
|
|
+ final char[] quadrant = dataShadow.quadrant;
|
|
|
+ final byte[] block = dataShadow.block;
|
|
|
+ final int lastShadow = this.last;
|
|
|
+ final int lastPlus1 = lastShadow + 1;
|
|
|
+ final boolean firstAttemptShadow = this.firstAttempt;
|
|
|
+ final int workLimitShadow = this.workLimit;
|
|
|
+ int workDoneShadow = this.workDone;
|
|
|
+
|
|
|
+ // Following block contains unrolled code which could be shortened by
|
|
|
+ // coding it in additional loops.
|
|
|
+
|
|
|
+ HP: while (--hp >= 0) {
|
|
|
+ final int h = INCS[hp];
|
|
|
+ final int mj = lo + h - 1;
|
|
|
+
|
|
|
+ for (int i = lo + h; i <= hi;) {
|
|
|
+ // copy
|
|
|
+ for (int k = 3; (i <= hi) && (--k >= 0); i++) {
|
|
|
+ final int v = fmap[i];
|
|
|
+ final int vd = v + d;
|
|
|
+ int j = i;
|
|
|
+
|
|
|
+ // for (int a;
|
|
|
+ // (j > mj) && mainGtU((a = fmap[j - h]) + d, vd,
|
|
|
+ // block, quadrant, lastShadow);
|
|
|
+ // j -= h) {
|
|
|
+ // fmap[j] = a;
|
|
|
+ // }
|
|
|
+ //
|
|
|
+ // unrolled version:
|
|
|
+
|
|
|
+ // start inline mainGTU
|
|
|
+ boolean onceRunned = false;
|
|
|
+ int a = 0;
|
|
|
+
|
|
|
+ HAMMER: while (true) {
|
|
|
+ if (onceRunned) {
|
|
|
+ fmap[j] = a;
|
|
|
+ if ((j -= h) <= mj) {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ onceRunned = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ a = fmap[j - h];
|
|
|
+ int i1 = a + d;
|
|
|
+ int i2 = vd;
|
|
|
+
|
|
|
+ // following could be done in a loop, but
|
|
|
+ // unrolled it for performance:
|
|
|
+ if (block[i1 + 1] == block[i2 + 1]) {
|
|
|
+ if (block[i1 + 2] == block[i2 + 2]) {
|
|
|
+ if (block[i1 + 3] == block[i2 + 3]) {
|
|
|
+ if (block[i1 + 4] == block[i2 + 4]) {
|
|
|
+ if (block[i1 + 5] == block[i2 + 5]) {
|
|
|
+ if (block[(i1 += 6)] == block[(i2 += 6)]) {
|
|
|
+ int x = lastShadow;
|
|
|
+ X: while (x > 0) {
|
|
|
+ x -= 4;
|
|
|
+
|
|
|
+ if (block[i1 + 1] == block[i2 + 1]) {
|
|
|
+ if (quadrant[i1] == quadrant[i2]) {
|
|
|
+ if (block[i1 + 2] == block[i2 + 2]) {
|
|
|
+ if (quadrant[i1 + 1] == quadrant[i2 + 1]) {
|
|
|
+ if (block[i1 + 3] == block[i2 + 3]) {
|
|
|
+ if (quadrant[i1 + 2] == quadrant[i2 + 2]) {
|
|
|
+ if (block[i1 + 4] == block[i2 + 4]) {
|
|
|
+ if (quadrant[i1 + 3] == quadrant[i2 + 3]) {
|
|
|
+ if ((i1 += 4) >= lastPlus1) {
|
|
|
+ i1 -= lastPlus1;
|
|
|
+ }
|
|
|
+ if ((i2 += 4) >= lastPlus1) {
|
|
|
+ i2 -= lastPlus1;
|
|
|
+ }
|
|
|
+ workDoneShadow++;
|
|
|
+ continue X;
|
|
|
+ } else if ((quadrant[i1 + 3] > quadrant[i2 + 3])) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((quadrant[i1 + 2] > quadrant[i2 + 2])) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((quadrant[i1 + 1] > quadrant[i2 + 1])) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((quadrant[i1] > quadrant[i2])) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+ break HAMMER;
|
|
|
+ } // while x > 0
|
|
|
+ else {
|
|
|
+ if ((block[i1] & 0xff) > (block[i2] & 0xff)) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } else if ((block[i1 + 5] & 0xff) > (block[i2 + 5] & 0xff)) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+ } else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
|
|
|
+ continue HAMMER;
|
|
|
+ } else {
|
|
|
+ break HAMMER;
|
|
|
+ }
|
|
|
+
|
|
|
+ } // HAMMER
|
|
|
+ // end inline mainGTU
|
|
|
+
|
|
|
+ fmap[j] = v;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (firstAttemptShadow && (i <= hi)
|
|
|
+ && (workDoneShadow > workLimitShadow)) {
|
|
|
+ break HP;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ this.workDone = workDoneShadow;
|
|
|
+ return firstAttemptShadow && (workDoneShadow > workLimitShadow);
|
|
|
+ }
|
|
|
+
|
|
|
+ private static void vswap(int[] fmap, int p1, int p2, int n) {
|
|
|
+ n += p1;
|
|
|
+ while (p1 < n) {
|
|
|
+ int t = fmap[p1];
|
|
|
+ fmap[p1++] = fmap[p2];
|
|
|
+ fmap[p2++] = t;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private static byte med3(byte a, byte b, byte c) {
|
|
|
+ return (a < b) ? (b < c ? b : a < c ? c : a) : (b > c ? b : a > c ? c
|
|
|
+ : a);
|
|
|
+ }
|
|
|
+
|
|
|
+ private void blockSort() {
|
|
|
+ this.workLimit = WORK_FACTOR * this.last;
|
|
|
+ this.workDone = 0;
|
|
|
+ this.blockRandomised = false;
|
|
|
+ this.firstAttempt = true;
|
|
|
+ mainSort();
|
|
|
+
|
|
|
+ if (this.firstAttempt && (this.workDone > this.workLimit)) {
|
|
|
+ randomiseBlock();
|
|
|
+ this.workLimit = this.workDone = 0;
|
|
|
+ this.firstAttempt = false;
|
|
|
+ mainSort();
|
|
|
+ }
|
|
|
+
|
|
|
+ int[] fmap = this.data.fmap;
|
|
|
+ this.origPtr = -1;
|
|
|
+ for (int i = 0, lastShadow = this.last; i <= lastShadow; i++) {
|
|
|
+ if (fmap[i] == 0) {
|
|
|
+ this.origPtr = i;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // assert (this.origPtr != -1) : this.origPtr;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Method "mainQSort3", file "blocksort.c", BZip2 1.0.2
|
|
|
+ */
|
|
|
+ private void mainQSort3(final Data dataShadow, final int loSt,
|
|
|
+ final int hiSt, final int dSt) {
|
|
|
+ final int[] stack_ll = dataShadow.stack_ll;
|
|
|
+ final int[] stack_hh = dataShadow.stack_hh;
|
|
|
+ final int[] stack_dd = dataShadow.stack_dd;
|
|
|
+ final int[] fmap = dataShadow.fmap;
|
|
|
+ final byte[] block = dataShadow.block;
|
|
|
+
|
|
|
+ stack_ll[0] = loSt;
|
|
|
+ stack_hh[0] = hiSt;
|
|
|
+ stack_dd[0] = dSt;
|
|
|
+
|
|
|
+ for (int sp = 1; --sp >= 0;) {
|
|
|
+ final int lo = stack_ll[sp];
|
|
|
+ final int hi = stack_hh[sp];
|
|
|
+ final int d = stack_dd[sp];
|
|
|
+
|
|
|
+ if ((hi - lo < SMALL_THRESH) || (d > DEPTH_THRESH)) {
|
|
|
+ if (mainSimpleSort(dataShadow, lo, hi, d)) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ final int d1 = d + 1;
|
|
|
+ final int med = med3(block[fmap[lo] + d1],
|
|
|
+ block[fmap[hi] + d1], block[fmap[(lo + hi) >>> 1] + d1]) & 0xff;
|
|
|
+
|
|
|
+ int unLo = lo;
|
|
|
+ int unHi = hi;
|
|
|
+ int ltLo = lo;
|
|
|
+ int gtHi = hi;
|
|
|
+
|
|
|
+ while (true) {
|
|
|
+ while (unLo <= unHi) {
|
|
|
+ final int n = ((int) block[fmap[unLo] + d1] & 0xff)
|
|
|
+ - med;
|
|
|
+ if (n == 0) {
|
|
|
+ final int temp = fmap[unLo];
|
|
|
+ fmap[unLo++] = fmap[ltLo];
|
|
|
+ fmap[ltLo++] = temp;
|
|
|
+ } else if (n < 0) {
|
|
|
+ unLo++;
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ while (unLo <= unHi) {
|
|
|
+ final int n = ((int) block[fmap[unHi] + d1] & 0xff)
|
|
|
+ - med;
|
|
|
+ if (n == 0) {
|
|
|
+ final int temp = fmap[unHi];
|
|
|
+ fmap[unHi--] = fmap[gtHi];
|
|
|
+ fmap[gtHi--] = temp;
|
|
|
+ } else if (n > 0) {
|
|
|
+ unHi--;
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (unLo <= unHi) {
|
|
|
+ final int temp = fmap[unLo];
|
|
|
+ fmap[unLo++] = fmap[unHi];
|
|
|
+ fmap[unHi--] = temp;
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (gtHi < ltLo) {
|
|
|
+ stack_ll[sp] = lo;
|
|
|
+ stack_hh[sp] = hi;
|
|
|
+ stack_dd[sp] = d1;
|
|
|
+ sp++;
|
|
|
+ } else {
|
|
|
+ int n = ((ltLo - lo) < (unLo - ltLo)) ? (ltLo - lo)
|
|
|
+ : (unLo - ltLo);
|
|
|
+ vswap(fmap, lo, unLo - n, n);
|
|
|
+ int m = ((hi - gtHi) < (gtHi - unHi)) ? (hi - gtHi)
|
|
|
+ : (gtHi - unHi);
|
|
|
+ vswap(fmap, unLo, hi - m + 1, m);
|
|
|
+
|
|
|
+ n = lo + unLo - ltLo - 1;
|
|
|
+ m = hi - (gtHi - unHi) + 1;
|
|
|
+
|
|
|
+ stack_ll[sp] = lo;
|
|
|
+ stack_hh[sp] = n;
|
|
|
+ stack_dd[sp] = d;
|
|
|
+ sp++;
|
|
|
+
|
|
|
+ stack_ll[sp] = n + 1;
|
|
|
+ stack_hh[sp] = m - 1;
|
|
|
+ stack_dd[sp] = d1;
|
|
|
+ sp++;
|
|
|
+
|
|
|
+ stack_ll[sp] = m;
|
|
|
+ stack_hh[sp] = hi;
|
|
|
+ stack_dd[sp] = d;
|
|
|
+ sp++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private void mainSort() {
|
|
|
+ final Data dataShadow = this.data;
|
|
|
+ final int[] runningOrder = dataShadow.mainSort_runningOrder;
|
|
|
+ final int[] copy = dataShadow.mainSort_copy;
|
|
|
+ final boolean[] bigDone = dataShadow.mainSort_bigDone;
|
|
|
+ final int[] ftab = dataShadow.ftab;
|
|
|
+ final byte[] block = dataShadow.block;
|
|
|
+ final int[] fmap = dataShadow.fmap;
|
|
|
+ final char[] quadrant = dataShadow.quadrant;
|
|
|
+ final int lastShadow = this.last;
|
|
|
+ final int workLimitShadow = this.workLimit;
|
|
|
+ final boolean firstAttemptShadow = this.firstAttempt;
|
|
|
+
|
|
|
+ // Set up the 2-byte frequency table
|
|
|
+ for (int i = 65537; --i >= 0;) {
|
|
|
+ ftab[i] = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * In the various block-sized structures, live data runs from 0 to
|
|
|
+ * last+NUM_OVERSHOOT_BYTES inclusive. First, set up the overshoot area
|
|
|
+ * for block.
|
|
|
+ */
|
|
|
+ for (int i = 0; i < NUM_OVERSHOOT_BYTES; i++) {
|
|
|
+ block[lastShadow + i + 2] = block[(i % (lastShadow + 1)) + 1];
|
|
|
+ }
|
|
|
+ for (int i = lastShadow + NUM_OVERSHOOT_BYTES; --i >= 0;) {
|
|
|
+ quadrant[i] = 0;
|
|
|
+ }
|
|
|
+ block[0] = block[lastShadow + 1];
|
|
|
+
|
|
|
+ // Complete the initial radix sort:
|
|
|
+
|
|
|
+ int c1 = block[0] & 0xff;
|
|
|
+ for (int i = 0; i <= lastShadow; i++) {
|
|
|
+ final int c2 = block[i + 1] & 0xff;
|
|
|
+ ftab[(c1 << 8) + c2]++;
|
|
|
+ c1 = c2;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 1; i <= 65536; i++)
|
|
|
+ ftab[i] += ftab[i - 1];
|
|
|
+
|
|
|
+ c1 = block[1] & 0xff;
|
|
|
+ for (int i = 0; i < lastShadow; i++) {
|
|
|
+ final int c2 = block[i + 2] & 0xff;
|
|
|
+ fmap[--ftab[(c1 << 8) + c2]] = i;
|
|
|
+ c1 = c2;
|
|
|
+ }
|
|
|
+
|
|
|
+ fmap[--ftab[((block[lastShadow + 1] & 0xff) << 8) + (block[1] & 0xff)]] = lastShadow;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Now ftab contains the first loc of every small bucket. Calculate the
|
|
|
+ * running order, from smallest to largest big bucket.
|
|
|
+ */
|
|
|
+ for (int i = 256; --i >= 0;) {
|
|
|
+ bigDone[i] = false;
|
|
|
+ runningOrder[i] = i;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int h = 364; h != 1;) {
|
|
|
+ h /= 3;
|
|
|
+ for (int i = h; i <= 255; i++) {
|
|
|
+ final int vv = runningOrder[i];
|
|
|
+ final int a = ftab[(vv + 1) << 8] - ftab[vv << 8];
|
|
|
+ final int b = h - 1;
|
|
|
+ int j = i;
|
|
|
+ for (int ro = runningOrder[j - h]; (ftab[(ro + 1) << 8] - ftab[ro << 8]) > a; ro = runningOrder[j
|
|
|
+ - h]) {
|
|
|
+ runningOrder[j] = ro;
|
|
|
+ j -= h;
|
|
|
+ if (j <= b) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ runningOrder[j] = vv;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The main sorting loop.
|
|
|
+ */
|
|
|
+ for (int i = 0; i <= 255; i++) {
|
|
|
+ /*
|
|
|
+ * Process big buckets, starting with the least full.
|
|
|
+ */
|
|
|
+ final int ss = runningOrder[i];
|
|
|
+
|
|
|
+ // Step 1:
|
|
|
+ /*
|
|
|
+ * Complete the big bucket [ss] by quicksorting any unsorted small
|
|
|
+ * buckets [ss, j]. Hopefully previous pointer-scanning phases have
|
|
|
+ * already completed many of the small buckets [ss, j], so we don't
|
|
|
+ * have to sort them at all.
|
|
|
+ */
|
|
|
+ for (int j = 0; j <= 255; j++) {
|
|
|
+ final int sb = (ss << 8) + j;
|
|
|
+ final int ftab_sb = ftab[sb];
|
|
|
+ if ((ftab_sb & SETMASK) != SETMASK) {
|
|
|
+ final int lo = ftab_sb & CLEARMASK;
|
|
|
+ final int hi = (ftab[sb + 1] & CLEARMASK) - 1;
|
|
|
+ if (hi > lo) {
|
|
|
+ mainQSort3(dataShadow, lo, hi, 2);
|
|
|
+ if (firstAttemptShadow
|
|
|
+ && (this.workDone > workLimitShadow)) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ftab[sb] = ftab_sb | SETMASK;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Step 2:
|
|
|
+ // Now scan this big bucket so as to synthesise the
|
|
|
+ // sorted order for small buckets [t, ss] for all t != ss.
|
|
|
+
|
|
|
+ for (int j = 0; j <= 255; j++) {
|
|
|
+ copy[j] = ftab[(j << 8) + ss] & CLEARMASK;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int j = ftab[ss << 8] & CLEARMASK, hj = (ftab[(ss + 1) << 8] & CLEARMASK); j < hj; j++) {
|
|
|
+ final int fmap_j = fmap[j];
|
|
|
+ c1 = block[fmap_j] & 0xff;
|
|
|
+ if (!bigDone[c1]) {
|
|
|
+ fmap[copy[c1]] = (fmap_j == 0) ? lastShadow : (fmap_j - 1);
|
|
|
+ copy[c1]++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int j = 256; --j >= 0;)
|
|
|
+ ftab[(j << 8) + ss] |= SETMASK;
|
|
|
+
|
|
|
+ // Step 3:
|
|
|
+ /*
|
|
|
+ * The ss big bucket is now done. Record this fact, and update the
|
|
|
+ * quadrant descriptors. Remember to update quadrants in the
|
|
|
+ * overshoot area too, if necessary. The "if (i < 255)" test merely
|
|
|
+ * skips this updating for the last bucket processed, since updating
|
|
|
+ * for the last bucket is pointless.
|
|
|
+ */
|
|
|
+ bigDone[ss] = true;
|
|
|
+
|
|
|
+ if (i < 255) {
|
|
|
+ final int bbStart = ftab[ss << 8] & CLEARMASK;
|
|
|
+ final int bbSize = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart;
|
|
|
+ int shifts = 0;
|
|
|
+
|
|
|
+ while ((bbSize >> shifts) > 65534) {
|
|
|
+ shifts++;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int j = 0; j < bbSize; j++) {
|
|
|
+ final int a2update = fmap[bbStart + j];
|
|
|
+ final char qVal = (char) (j >> shifts);
|
|
|
+ quadrant[a2update] = qVal;
|
|
|
+ if (a2update < NUM_OVERSHOOT_BYTES) {
|
|
|
+ quadrant[a2update + lastShadow + 1] = qVal;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private void randomiseBlock() {
|
|
|
+ final boolean[] inUse = this.data.inUse;
|
|
|
+ final byte[] block = this.data.block;
|
|
|
+ final int lastShadow = this.last;
|
|
|
+
|
|
|
+ for (int i = 256; --i >= 0;)
|
|
|
+ inUse[i] = false;
|
|
|
+
|
|
|
+ int rNToGo = 0;
|
|
|
+ int rTPos = 0;
|
|
|
+ for (int i = 0, j = 1; i <= lastShadow; i = j, j++) {
|
|
|
+ if (rNToGo == 0) {
|
|
|
+ rNToGo = (char) BZip2Constants.rNums[rTPos];
|
|
|
+ if (++rTPos == 512) {
|
|
|
+ rTPos = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ rNToGo--;
|
|
|
+ block[j] ^= ((rNToGo == 1) ? 1 : 0);
|
|
|
+
|
|
|
+ // handle 16 bit signed numbers
|
|
|
+ inUse[block[j] & 0xff] = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ this.blockRandomised = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ private void generateMTFValues() {
|
|
|
+ final int lastShadow = this.last;
|
|
|
+ final Data dataShadow = this.data;
|
|
|
+ final boolean[] inUse = dataShadow.inUse;
|
|
|
+ final byte[] block = dataShadow.block;
|
|
|
+ final int[] fmap = dataShadow.fmap;
|
|
|
+ final char[] sfmap = dataShadow.sfmap;
|
|
|
+ final int[] mtfFreq = dataShadow.mtfFreq;
|
|
|
+ final byte[] unseqToSeq = dataShadow.unseqToSeq;
|
|
|
+ final byte[] yy = dataShadow.generateMTFValues_yy;
|
|
|
+
|
|
|
+ // make maps
|
|
|
+ int nInUseShadow = 0;
|
|
|
+ for (int i = 0; i < 256; i++) {
|
|
|
+ if (inUse[i]) {
|
|
|
+ unseqToSeq[i] = (byte) nInUseShadow;
|
|
|
+ nInUseShadow++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ this.nInUse = nInUseShadow;
|
|
|
+
|
|
|
+ final int eob = nInUseShadow + 1;
|
|
|
+
|
|
|
+ for (int i = eob; i >= 0; i--) {
|
|
|
+ mtfFreq[i] = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = nInUseShadow; --i >= 0;) {
|
|
|
+ yy[i] = (byte) i;
|
|
|
+ }
|
|
|
+
|
|
|
+ int wr = 0;
|
|
|
+ int zPend = 0;
|
|
|
+
|
|
|
+ for (int i = 0; i <= lastShadow; i++) {
|
|
|
+ final byte ll_i = unseqToSeq[block[fmap[i]] & 0xff];
|
|
|
+ byte tmp = yy[0];
|
|
|
+ int j = 0;
|
|
|
+
|
|
|
+ while (ll_i != tmp) {
|
|
|
+ j++;
|
|
|
+ byte tmp2 = tmp;
|
|
|
+ tmp = yy[j];
|
|
|
+ yy[j] = tmp2;
|
|
|
+ }
|
|
|
+ yy[0] = tmp;
|
|
|
+
|
|
|
+ if (j == 0) {
|
|
|
+ zPend++;
|
|
|
+ } else {
|
|
|
+ if (zPend > 0) {
|
|
|
+ zPend--;
|
|
|
+ while (true) {
|
|
|
+ if ((zPend & 1) == 0) {
|
|
|
+ sfmap[wr] = RUNA;
|
|
|
+ wr++;
|
|
|
+ mtfFreq[RUNA]++;
|
|
|
+ } else {
|
|
|
+ sfmap[wr] = RUNB;
|
|
|
+ wr++;
|
|
|
+ mtfFreq[RUNB]++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (zPend >= 2) {
|
|
|
+ zPend = (zPend - 2) >> 1;
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ zPend = 0;
|
|
|
+ }
|
|
|
+ sfmap[wr] = (char) (j + 1);
|
|
|
+ wr++;
|
|
|
+ mtfFreq[j + 1]++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (zPend > 0) {
|
|
|
+ zPend--;
|
|
|
+ while (true) {
|
|
|
+ if ((zPend & 1) == 0) {
|
|
|
+ sfmap[wr] = RUNA;
|
|
|
+ wr++;
|
|
|
+ mtfFreq[RUNA]++;
|
|
|
+ } else {
|
|
|
+ sfmap[wr] = RUNB;
|
|
|
+ wr++;
|
|
|
+ mtfFreq[RUNB]++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (zPend >= 2) {
|
|
|
+ zPend = (zPend - 2) >> 1;
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ sfmap[wr] = (char) eob;
|
|
|
+ mtfFreq[eob]++;
|
|
|
+ this.nMTF = wr + 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ private static final class Data extends Object {
|
|
|
+
|
|
|
+ // with blockSize 900k
|
|
|
+ final boolean[] inUse = new boolean[256]; // 256 byte
|
|
|
+ final byte[] unseqToSeq = new byte[256]; // 256 byte
|
|
|
+ final int[] mtfFreq = new int[MAX_ALPHA_SIZE]; // 1032 byte
|
|
|
+ final byte[] selector = new byte[MAX_SELECTORS]; // 18002 byte
|
|
|
+ final byte[] selectorMtf = new byte[MAX_SELECTORS]; // 18002 byte
|
|
|
+
|
|
|
+ final byte[] generateMTFValues_yy = new byte[256]; // 256 byte
|
|
|
+ final byte[][] sendMTFValues_len = new byte[N_GROUPS][MAX_ALPHA_SIZE]; // 1548
|
|
|
+ // byte
|
|
|
+ final int[][] sendMTFValues_rfreq = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192
|
|
|
+ // byte
|
|
|
+ final int[] sendMTFValues_fave = new int[N_GROUPS]; // 24 byte
|
|
|
+ final short[] sendMTFValues_cost = new short[N_GROUPS]; // 12 byte
|
|
|
+ final int[][] sendMTFValues_code = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192
|
|
|
+ // byte
|
|
|
+ final byte[] sendMTFValues2_pos = new byte[N_GROUPS]; // 6 byte
|
|
|
+ final boolean[] sentMTFValues4_inUse16 = new boolean[16]; // 16 byte
|
|
|
+
|
|
|
+ final int[] stack_ll = new int[QSORT_STACK_SIZE]; // 4000 byte
|
|
|
+ final int[] stack_hh = new int[QSORT_STACK_SIZE]; // 4000 byte
|
|
|
+ final int[] stack_dd = new int[QSORT_STACK_SIZE]; // 4000 byte
|
|
|
+
|
|
|
+ final int[] mainSort_runningOrder = new int[256]; // 1024 byte
|
|
|
+ final int[] mainSort_copy = new int[256]; // 1024 byte
|
|
|
+ final boolean[] mainSort_bigDone = new boolean[256]; // 256 byte
|
|
|
+
|
|
|
+ final int[] heap = new int[MAX_ALPHA_SIZE + 2]; // 1040 byte
|
|
|
+ final int[] weight = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte
|
|
|
+ final int[] parent = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte
|
|
|
+
|
|
|
+ final int[] ftab = new int[65537]; // 262148 byte
|
|
|
+ // ------------
|
|
|
+ // 333408 byte
|
|
|
+
|
|
|
+ final byte[] block; // 900021 byte
|
|
|
+ final int[] fmap; // 3600000 byte
|
|
|
+ final char[] sfmap; // 3600000 byte
|
|
|
+ // ------------
|
|
|
+ // 8433529 byte
|
|
|
+ // ============
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Array instance identical to sfmap, both are used only temporarily and
|
|
|
+ * indepently, so we do not need to allocate additional memory.
|
|
|
+ */
|
|
|
+ final char[] quadrant;
|
|
|
+
|
|
|
+ Data(int blockSize100k) {
|
|
|
+ super();
|
|
|
+
|
|
|
+ final int n = blockSize100k * BZip2Constants.baseBlockSize;
|
|
|
+ this.block = new byte[(n + 1 + NUM_OVERSHOOT_BYTES)];
|
|
|
+ this.fmap = new int[n];
|
|
|
+ this.sfmap = new char[2 * n];
|
|
|
+ this.quadrant = this.sfmap;
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+}
|