|
@@ -0,0 +1,3218 @@
|
|
|
+<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
|
|
+<html>
|
|
|
+<head>
|
|
|
+<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
|
|
+<meta content="Apache Forrest" name="Generator">
|
|
|
+<meta name="Forrest-version" content="0.8">
|
|
|
+<meta name="Forrest-skin-name" content="pelt">
|
|
|
+<title>Hadoop Map-Reduce Tutorial</title>
|
|
|
+<link type="text/css" href="skin/basic.css" rel="stylesheet">
|
|
|
+<link media="screen" type="text/css" href="skin/screen.css" rel="stylesheet">
|
|
|
+<link media="print" type="text/css" href="skin/print.css" rel="stylesheet">
|
|
|
+<link type="text/css" href="skin/profile.css" rel="stylesheet">
|
|
|
+<script src="skin/getBlank.js" language="javascript" type="text/javascript"></script><script src="skin/getMenu.js" language="javascript" type="text/javascript"></script><script src="skin/fontsize.js" language="javascript" type="text/javascript"></script>
|
|
|
+<link rel="shortcut icon" href="images/favicon.ico">
|
|
|
+</head>
|
|
|
+<body onload="init()">
|
|
|
+<script type="text/javascript">ndeSetTextSize();</script>
|
|
|
+<div id="top">
|
|
|
+<!--+
|
|
|
+ |breadtrail
|
|
|
+ +-->
|
|
|
+<div class="breadtrail">
|
|
|
+<a href="http://www.apache.org/">Apache</a> > <a href="http://lucene.apache.org/">Lucene</a> > <a href="http://lucene.apache.org/hadoop/">Hadoop</a><script src="skin/breadcrumbs.js" language="JavaScript" type="text/javascript"></script>
|
|
|
+</div>
|
|
|
+<!--+
|
|
|
+ |header
|
|
|
+ +-->
|
|
|
+<div class="header">
|
|
|
+<!--+
|
|
|
+ |start group logo
|
|
|
+ +-->
|
|
|
+<div class="grouplogo">
|
|
|
+<a href="http://lucene.apache.org/"><img class="logoImage" alt="Lucene" src="images/lucene_green_150.gif" title="Apache Lucene"></a>
|
|
|
+</div>
|
|
|
+<!--+
|
|
|
+ |end group logo
|
|
|
+ +-->
|
|
|
+<!--+
|
|
|
+ |start Project Logo
|
|
|
+ +-->
|
|
|
+<div class="projectlogo">
|
|
|
+<a href="http://lucene.apache.org/hadoop/"><img class="logoImage" alt="Hadoop" src="images/hadoop-logo.jpg" title="Scalable Computing Platform"></a>
|
|
|
+</div>
|
|
|
+<!--+
|
|
|
+ |end Project Logo
|
|
|
+ +-->
|
|
|
+<!--+
|
|
|
+ |start Search
|
|
|
+ +-->
|
|
|
+<div class="searchbox">
|
|
|
+<form action="http://www.google.com/search" method="get" class="roundtopsmall">
|
|
|
+<input value="lucene.apache.org" name="sitesearch" type="hidden"><input onFocus="getBlank (this, 'Search the site with google');" size="25" name="q" id="query" type="text" value="Search the site with google">
|
|
|
+ <input name="Search" value="Search" type="submit">
|
|
|
+</form>
|
|
|
+</div>
|
|
|
+<!--+
|
|
|
+ |end search
|
|
|
+ +-->
|
|
|
+<!--+
|
|
|
+ |start Tabs
|
|
|
+ +-->
|
|
|
+<ul id="tabs">
|
|
|
+<li class="current">
|
|
|
+<a class="selected" href="index.html">Main</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a class="unselected" href="http://wiki.apache.org/lucene-hadoop">Wiki</a>
|
|
|
+</li>
|
|
|
+</ul>
|
|
|
+<!--+
|
|
|
+ |end Tabs
|
|
|
+ +-->
|
|
|
+</div>
|
|
|
+</div>
|
|
|
+<div id="main">
|
|
|
+<div id="publishedStrip">
|
|
|
+<!--+
|
|
|
+ |start Subtabs
|
|
|
+ +-->
|
|
|
+<div id="level2tabs"></div>
|
|
|
+<!--+
|
|
|
+ |end Endtabs
|
|
|
+ +-->
|
|
|
+<script type="text/javascript"><!--
|
|
|
+document.write("Last Published: " + document.lastModified);
|
|
|
+// --></script>
|
|
|
+</div>
|
|
|
+<!--+
|
|
|
+ |breadtrail
|
|
|
+ +-->
|
|
|
+<div class="breadtrail">
|
|
|
+
|
|
|
+
|
|
|
+ </div>
|
|
|
+<!--+
|
|
|
+ |start Menu, mainarea
|
|
|
+ +-->
|
|
|
+<!--+
|
|
|
+ |start Menu
|
|
|
+ +-->
|
|
|
+<div id="menu">
|
|
|
+<div onclick="SwitchMenu('menu_1.1', 'skin/')" id="menu_1.1Title" class="menutitle">Project</div>
|
|
|
+<div id="menu_1.1" class="menuitemgroup">
|
|
|
+<div class="menuitem">
|
|
|
+<a href="releases.html">Releases</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="releases.html#News">News</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="credits.html">Credits</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="http://www.cafepress.com/hadoop/">Buy Stuff</a>
|
|
|
+</div>
|
|
|
+</div>
|
|
|
+<div onclick="SwitchMenu('menu_selected_1.2', 'skin/')" id="menu_selected_1.2Title" class="menutitle" style="background-image: url('skin/images/chapter_open.gif');">Documentation</div>
|
|
|
+<div id="menu_selected_1.2" class="selectedmenuitemgroup" style="display: block;">
|
|
|
+<div class="menuitem">
|
|
|
+<a href="documentation.html">Overview</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="quickstart.html">Quickstart</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="cluster_setup.html">Cluster Setup</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="hdfs_design.html">HDFS Architecture</a>
|
|
|
+</div>
|
|
|
+<div class="menupage">
|
|
|
+<div class="menupagetitle">Map-Reduce Tutorial</div>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="api/index.html">API Docs</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="http://wiki.apache.org/lucene-hadoop/">Wiki</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="http://wiki.apache.org/lucene-hadoop/FAQ">FAQ</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="mailing_lists.html#Users">Mailing Lists</a>
|
|
|
+</div>
|
|
|
+</div>
|
|
|
+<div onclick="SwitchMenu('menu_1.3', 'skin/')" id="menu_1.3Title" class="menutitle">Developers</div>
|
|
|
+<div id="menu_1.3" class="menuitemgroup">
|
|
|
+<div class="menuitem">
|
|
|
+<a href="mailing_lists.html#Developers">Mailing Lists</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="issue_tracking.html">Issue Tracking</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="version_control.html">Version Control</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="http://lucene.zones.apache.org:8080/hudson/job/Hadoop-Nightly/">Nightly Build</a>
|
|
|
+</div>
|
|
|
+<div class="menuitem">
|
|
|
+<a href="irc.html">IRC Channel</a>
|
|
|
+</div>
|
|
|
+</div>
|
|
|
+<div id="credit"></div>
|
|
|
+<div id="roundbottom">
|
|
|
+<img style="display: none" class="corner" height="15" width="15" alt="" src="skin/images/rc-b-l-15-1body-2menu-3menu.png"></div>
|
|
|
+<!--+
|
|
|
+ |alternative credits
|
|
|
+ +-->
|
|
|
+<div id="credit2"></div>
|
|
|
+</div>
|
|
|
+<!--+
|
|
|
+ |end Menu
|
|
|
+ +-->
|
|
|
+<!--+
|
|
|
+ |start content
|
|
|
+ +-->
|
|
|
+<div id="content">
|
|
|
+<div title="Portable Document Format" class="pdflink">
|
|
|
+<a class="dida" href="mapred_tutorial.pdf"><img alt="PDF -icon" src="skin/images/pdfdoc.gif" class="skin"><br>
|
|
|
+ PDF</a>
|
|
|
+</div>
|
|
|
+<h1>Hadoop Map-Reduce Tutorial</h1>
|
|
|
+<div id="minitoc-area">
|
|
|
+<ul class="minitoc">
|
|
|
+<li>
|
|
|
+<a href="#Purpose">Purpose</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Pre-requisites">Pre-requisites</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Overview">Overview</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Inputs+and+Outputs">Inputs and Outputs</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Example%3A+WordCount+v1.0">Example: WordCount v1.0</a>
|
|
|
+<ul class="minitoc">
|
|
|
+<li>
|
|
|
+<a href="#Source+Code">Source Code</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Usage">Usage</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Walk-through">Walk-through</a>
|
|
|
+</li>
|
|
|
+</ul>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Map-Reduce+-+User+Interfaces">Map-Reduce - User Interfaces</a>
|
|
|
+<ul class="minitoc">
|
|
|
+<li>
|
|
|
+<a href="#Payload">Payload</a>
|
|
|
+<ul class="minitoc">
|
|
|
+<li>
|
|
|
+<a href="#Mapper">Mapper</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Reducer">Reducer</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Partitioner">Partitioner</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Reporter">Reporter</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#OutputCollector">OutputCollector</a>
|
|
|
+</li>
|
|
|
+</ul>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Job+Configuration">Job Configuration</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Job+Submission+and+Monitoring">Job Submission and Monitoring</a>
|
|
|
+<ul class="minitoc">
|
|
|
+<li>
|
|
|
+<a href="#Job+Control">Job Control</a>
|
|
|
+</li>
|
|
|
+</ul>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Job+Input">Job Input</a>
|
|
|
+<ul class="minitoc">
|
|
|
+<li>
|
|
|
+<a href="#InputSplit">InputSplit</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#RecordReader">RecordReader</a>
|
|
|
+</li>
|
|
|
+</ul>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Job+Output">Job Output</a>
|
|
|
+<ul class="minitoc">
|
|
|
+<li>
|
|
|
+<a href="#Task+Side-Effect+Files">Task Side-Effect Files</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#RecordWriter">RecordWriter</a>
|
|
|
+</li>
|
|
|
+</ul>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Other+Useful+Features">Other Useful Features</a>
|
|
|
+<ul class="minitoc">
|
|
|
+<li>
|
|
|
+<a href="#Counters">Counters</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#DistributedCache">DistributedCache</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Tool">Tool</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#IsolationRunner">IsolationRunner</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#JobControl">JobControl</a>
|
|
|
+</li>
|
|
|
+</ul>
|
|
|
+</li>
|
|
|
+</ul>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Example%3A+WordCount+v2.0">Example: WordCount v2.0</a>
|
|
|
+<ul class="minitoc">
|
|
|
+<li>
|
|
|
+<a href="#Source+Code-N10A91">Source Code</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Sample+Runs">Sample Runs</a>
|
|
|
+</li>
|
|
|
+<li>
|
|
|
+<a href="#Salient+Points">Salient Points</a>
|
|
|
+</li>
|
|
|
+</ul>
|
|
|
+</li>
|
|
|
+</ul>
|
|
|
+</div>
|
|
|
+
|
|
|
+
|
|
|
+<a name="N1000C"></a><a name="Purpose"></a>
|
|
|
+<h2 class="h3">Purpose</h2>
|
|
|
+<div class="section">
|
|
|
+<p>This document comprehensively describes all user-facing facets of the
|
|
|
+ Hadoop Map-Reduce framework and serve as a tutorial.
|
|
|
+ </p>
|
|
|
+</div>
|
|
|
+
|
|
|
+
|
|
|
+<a name="N10016"></a><a name="Pre-requisites"></a>
|
|
|
+<h2 class="h3">Pre-requisites</h2>
|
|
|
+<div class="section">
|
|
|
+<p>Ensure that Hadoop is installed, configured and is running. More
|
|
|
+ details:</p>
|
|
|
+<ul>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Hadoop <a href="quickstart.html">Quickstart</a> for first-time users.
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Hadoop <a href="cluster_setup.html">Cluster Setup</a> for large,
|
|
|
+ distributed clusters.
|
|
|
+ </li>
|
|
|
+
|
|
|
+</ul>
|
|
|
+</div>
|
|
|
+
|
|
|
+
|
|
|
+<a name="N10031"></a><a name="Overview"></a>
|
|
|
+<h2 class="h3">Overview</h2>
|
|
|
+<div class="section">
|
|
|
+<p>Hadoop Map-Reduce is a software framework for easily writing
|
|
|
+ applications which process vast amounts of data (multi-terabyte data-sets)
|
|
|
+ in-parallel on large clusters (thousands of nodes) of commodity
|
|
|
+ hardware in a reliable, fault-tolerant manner.</p>
|
|
|
+<p>A Map-Reduce <em>job</em> usually splits the input data-set into
|
|
|
+ independent chunks which are processed by the <em>map tasks</em> in a
|
|
|
+ completely parallel manner. The framework sorts the outputs of the maps,
|
|
|
+ which are then input to the <em>reduce tasks</em>. Typically both the
|
|
|
+ input and the output of the job are stored in a file-system. The framework
|
|
|
+ takes care of scheduling tasks, monitoring them and re-executes the failed
|
|
|
+ tasks.</p>
|
|
|
+<p>Typically the compute nodes and the storage nodes are the same, that is,
|
|
|
+ the Map-Reduce framework and the <a href="hdfs_design.html">Distributed
|
|
|
+ FileSystem</a> are running on the same set of nodes. This configuration
|
|
|
+ allows the framework to effectively schedule tasks on the nodes where data
|
|
|
+ is already present, resulting in very high aggregate bandwidth across the
|
|
|
+ cluster.</p>
|
|
|
+<p>The Map-Reduce framework consists of a single master
|
|
|
+ <span class="codefrag">JobTracker</span> and one slave <span class="codefrag">TaskTracker</span> per
|
|
|
+ cluster-node. The master is responsible for scheduling the jobs' component
|
|
|
+ tasks on the slaves, monitoring them and re-executing the failed tasks. The
|
|
|
+ slaves execute the tasks as directed by the master.</p>
|
|
|
+<p>Minimally, applications specify the input/output locations and supply
|
|
|
+ <em>map</em> and <em>reduce</em> functions via implementations of
|
|
|
+ appropriate interfaces and/or abstract-classes. These, and other job
|
|
|
+ parameters, comprise the <em>job configuration</em>. The Hadoop
|
|
|
+ <em>job client</em> then submits the job (jar/executable etc.) and
|
|
|
+ configuration to the <span class="codefrag">JobTracker</span> which then assumes the
|
|
|
+ responsibility of distributing the software/configuration to the slaves,
|
|
|
+ scheduling tasks and monitoring them, providing status and diagnostic
|
|
|
+ information to the job-client.</p>
|
|
|
+<p>Although the Hadoop framework is implemented in Java<sup>TM</sup>,
|
|
|
+ Map-Reduce applications need not be written in Java.</p>
|
|
|
+<ul>
|
|
|
+
|
|
|
+<li>
|
|
|
+
|
|
|
+<a href="api/org/apache/hadoop/streaming/package-summary.html">
|
|
|
+ Hadoop Streaming</a> is a utility which allows users to create and run
|
|
|
+ jobs with any executables (e.g. shell utilities) as the mapper and/or
|
|
|
+ the reducer.
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+
|
|
|
+<a href="api/org/apache/hadoop/mapred/pipes/package-summary.html">
|
|
|
+ Hadoop Pipes</a> is a <a href="http://www.swig.org/">SWIG</a>-
|
|
|
+ compatible <em>C++ API</em> to implement Map-Reduce applications (non
|
|
|
+ JNI<sup>TM</sup> based).
|
|
|
+ </li>
|
|
|
+
|
|
|
+</ul>
|
|
|
+</div>
|
|
|
+
|
|
|
+
|
|
|
+<a name="N1008A"></a><a name="Inputs+and+Outputs"></a>
|
|
|
+<h2 class="h3">Inputs and Outputs</h2>
|
|
|
+<div class="section">
|
|
|
+<p>The Map-Reduce framework operates exclusively on
|
|
|
+ <span class="codefrag"><key, value></span> pairs, that is, the framework views the
|
|
|
+ input to the job as a set of <span class="codefrag"><key, value></span> pairs and
|
|
|
+ produces a set of <span class="codefrag"><key, value></span> pairs as the output of
|
|
|
+ the job, conceivably of different types.</p>
|
|
|
+<p>The <span class="codefrag">key</span> and <span class="codefrag">value</span> classes have to be
|
|
|
+ serializable by the framework and hence need to implement the
|
|
|
+ <a href="api/org/apache/hadoop/io/Writable.html">Writable</a>
|
|
|
+ interface. Additionally, the <span class="codefrag">key</span> classes have to implement the
|
|
|
+ <a href="api/org/apache/hadoop/io/WritableComparable.html">
|
|
|
+ WritableComparable</a> interface to facilitate sorting by the framework.
|
|
|
+ </p>
|
|
|
+<p>Input and Output types of a Map-Reduce job:</p>
|
|
|
+<p>
|
|
|
+ (input) <span class="codefrag"><k1, v1></span>
|
|
|
+ ->
|
|
|
+ <strong>map</strong>
|
|
|
+ ->
|
|
|
+ <span class="codefrag"><k2, v2></span>
|
|
|
+ ->
|
|
|
+ <strong>combine</strong>
|
|
|
+ ->
|
|
|
+ <span class="codefrag"><k2, v2></span>
|
|
|
+ ->
|
|
|
+ <strong>reduce</strong>
|
|
|
+ ->
|
|
|
+ <span class="codefrag"><k3, v3></span> (output)
|
|
|
+ </p>
|
|
|
+</div>
|
|
|
+
|
|
|
+
|
|
|
+<a name="N100CC"></a><a name="Example%3A+WordCount+v1.0"></a>
|
|
|
+<h2 class="h3">Example: WordCount v1.0</h2>
|
|
|
+<div class="section">
|
|
|
+<p>Before we jump into the details, lets walk through an example Map-Reduce
|
|
|
+ application to get a flavour for how they work.</p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">WordCount</span> is a simple application that counts the number of
|
|
|
+ occurences of each word in a given input set.</p>
|
|
|
+<a name="N100DA"></a><a name="Source+Code"></a>
|
|
|
+<h3 class="h4">Source Code</h3>
|
|
|
+<table class="ForrestTable" cellspacing="1" cellpadding="4">
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<th colspan="1" rowspan="1"></th>
|
|
|
+ <th colspan="1" rowspan="1">WordCount.java</th>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">1.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">package org.myorg;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">2.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">3.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import java.io.Exception;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">4.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import java.util.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">5.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">6.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.fs.Path;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">7.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.conf.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">8.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.io.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">9.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.mapred.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">10.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.util.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">11.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">12.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">public class WordCount {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">13.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">14.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ public static class MapClass extends MapReduceBase
|
|
|
+ implements Mapper<LongWritable, Text, Text, IntWritable> {
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">15.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ private final static IntWritable one = new IntWritable(1);
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">16.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">private Text word = new Text();</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">17.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">18.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ public void map(LongWritable key, Text value,
|
|
|
+ OutputCollector<Text, IntWritable> output,
|
|
|
+ Reporter reporter) throws IOException {
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">19.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">String line = value.toString();</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">20.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">StringTokenizer tokenizer = new StringTokenizer(line);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">21.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">while (tokenizer.hasMoreTokens()) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">22.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">word.set(tokenizer.nextToken());</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">23.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">output.collect(word, one);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">24.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">25.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">26.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">27.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">28.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ public static class Reduce extends MapReduceBase implements
|
|
|
+ Reducer<Text, IntWritable, Text, IntWritable> {
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">29.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ public void reduce(Text key, Iterator<IntWritable> values,
|
|
|
+ OutputCollector<Text, IntWritable> output,
|
|
|
+ Reporter reporter) throws IOException {
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">30.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">int sum = 0;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">31.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">while (values.hasNext()) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">32.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">sum += values.next().get();</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">33.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">34.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">output.collect(key, new IntWritable(sum));</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">35.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">36.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">37.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">38.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ public static void main(String[] args) throws Exception {
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">39.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ JobConf conf = new JobConf(WordCount.class);
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">40.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setJobName("wordcount");</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">41.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">42.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setOutputKeyClass(Text.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">43.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setOutputValueClass(IntWritable.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">44.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">45.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setMapperClass(MapClass.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">46.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setCombinerClass(Reduce.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">47.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setReducerClass(Reduce.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">48.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">49.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setInputFormat(TextInputFormat.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">50.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setOutputFormat(TextOutputFormat.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">51.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">52.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setInputPath(new Path(args[1]));</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">53.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setOutputPath(new Path(args[2]));</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">54.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">55.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">JobClient.runJob(conf);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">57.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">58.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">59.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+</table>
|
|
|
+<a name="N1045C"></a><a name="Usage"></a>
|
|
|
+<h3 class="h4">Usage</h3>
|
|
|
+<p>Assuming <span class="codefrag">HADOOP_HOME</span> is the root of the installation and
|
|
|
+ <span class="codefrag">HADOOP_VERSION</span> is the Hadoop version installed, compile
|
|
|
+ <span class="codefrag">WordCount.java</span> and create a jar:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ $ javac -classpath ${HADOOP_HOME}/hadoop-${HADOOP_VERSION}-core.jar
|
|
|
+ WordCount.java
|
|
|
+ </span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">$ jar -cvf /usr/joe/wordcount.jar WordCount.class</span>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>Assuming that:</p>
|
|
|
+<ul>
|
|
|
+
|
|
|
+<li>
|
|
|
+
|
|
|
+<span class="codefrag">/usr/joe/wordcount/input</span> - input directory in HDFS
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+
|
|
|
+<span class="codefrag">/usr/joe/wordcount/output</span> - output directory in HDFS
|
|
|
+ </li>
|
|
|
+
|
|
|
+</ul>
|
|
|
+<p>Sample text-files as input:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">$ bin/hadoop dfs -ls /usr/joe/wordcount/input/</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">/usr/joe/wordcount/input/file01</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">/usr/joe/wordcount/input/file02</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hello World Bye World</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hello Hadoop Goodbye Hadoop</span>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>Run the application:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
|
|
|
+ /usr/joe/wordcount/input /usr/joe/wordcount/output
|
|
|
+ </span>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>Output:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
|
|
|
+ </span>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Bye 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Goodbye 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hadoop 2</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hello 2</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">World 2</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+</p>
|
|
|
+<a name="N104D8"></a><a name="Walk-through"></a>
|
|
|
+<h3 class="h4">Walk-through</h3>
|
|
|
+<p>The <span class="codefrag">WordCount</span> application is quite straight-forward.</p>
|
|
|
+<p>The <span class="codefrag">Mapper</span> implementation (lines 14-26), via the
|
|
|
+ <span class="codefrag">map</span> method (lines 18-25), processes one line at a time,
|
|
|
+ as provided by the specified <span class="codefrag">TextInputFormat</span> (line 49).
|
|
|
+ It then splits the line into tokens separated by whitespaces, via the
|
|
|
+ <span class="codefrag">StringTokenizer</span>, and emits a key-value pair of
|
|
|
+ <span class="codefrag">< <word>, 1></span>.</p>
|
|
|
+<p>
|
|
|
+ For the given sample input the first map emits:<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Hello, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< World, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Bye, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< World, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>
|
|
|
+ The second map emits:<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Hello, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Hadoop, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Goodbye, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Hadoop, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>We'll learn more about the number of maps spawned for a given job, and
|
|
|
+ how to control them in a fine-grained manner, a bit later in the
|
|
|
+ tutorial.</p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">WordCount</span> also specifies a <span class="codefrag">combiner</span> (line
|
|
|
+ 46). Hence, the output of each map is passed through the local combiner
|
|
|
+ (which is same as the <span class="codefrag">Reducer</span> as per the job
|
|
|
+ configuration) for local aggregation, after being sorted on the
|
|
|
+ <em>key</em>s.</p>
|
|
|
+<p>
|
|
|
+ The output of the first map:<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Bye, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Hello, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< World, 2></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>
|
|
|
+ The output of the second map:<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Goodbye, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Hadoop, 2></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Hello, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>The <span class="codefrag">Reducer</span> implementation (lines 28-36), via the
|
|
|
+ <span class="codefrag">reduce</span> method (lines 29-35) just sums up the values,
|
|
|
+ which are the occurence counts for each key (i.e. words in this example).
|
|
|
+ </p>
|
|
|
+<p>
|
|
|
+ Thus the output of the job is:<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Bye, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Goodbye, 1></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Hadoop, 2></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< Hello, 2></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">< World, 2></span>
|
|
|
+<br>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>The <span class="codefrag">run</span> method specifies various facets of the job, such
|
|
|
+ as the input/output paths (passed via the command line), key/value
|
|
|
+ types, input/output formats etc., in the <span class="codefrag">JobConf</span>.
|
|
|
+ It then calls the <span class="codefrag">JobClient.runJob</span> (line 55) to submit the
|
|
|
+ and monitor its progress.</p>
|
|
|
+<p>We'll learn more about <span class="codefrag">JobConf</span>, <span class="codefrag">JobClient</span>,
|
|
|
+ <span class="codefrag">Tool</span> and other interfaces and classes a bit later in the
|
|
|
+ tutorial.</p>
|
|
|
+</div>
|
|
|
+
|
|
|
+
|
|
|
+<a name="N1058F"></a><a name="Map-Reduce+-+User+Interfaces"></a>
|
|
|
+<h2 class="h3">Map-Reduce - User Interfaces</h2>
|
|
|
+<div class="section">
|
|
|
+<p>This section provides a reasonable amount of detail on every user-facing
|
|
|
+ aspect of the Map-Reduce framwork. This should help users implement,
|
|
|
+ configure and tune their jobs in a fine-grained manner. However, please
|
|
|
+ note that the javadoc for each class/interface remains the most
|
|
|
+ comprehensive documentation available; this is only meant to be a tutorial.
|
|
|
+ </p>
|
|
|
+<p>Let us first take the <span class="codefrag">Mapper</span> and <span class="codefrag">Reducer</span>
|
|
|
+ interfaces. Applications typically implement them to provide the
|
|
|
+ <span class="codefrag">map</span> and <span class="codefrag">reduce</span> methods.</p>
|
|
|
+<p>We will then discuss other core interfaces including
|
|
|
+ <span class="codefrag">JobConf</span>, <span class="codefrag">JobClient</span>, <span class="codefrag">Partitioner</span>,
|
|
|
+ <span class="codefrag">OutputCollector</span>, <span class="codefrag">Reporter</span>,
|
|
|
+ <span class="codefrag">InputFormat</span>, <span class="codefrag">OutputFormat</span> and others.</p>
|
|
|
+<p>Finally, we will wrap up by discussing some useful features of the
|
|
|
+ framework such as the <span class="codefrag">DistributedCache</span>,
|
|
|
+ <span class="codefrag">IsolationRunner</span> etc.</p>
|
|
|
+<a name="N105C8"></a><a name="Payload"></a>
|
|
|
+<h3 class="h4">Payload</h3>
|
|
|
+<p>Applications typically implement the <span class="codefrag">Mapper</span> and
|
|
|
+ <span class="codefrag">Reducer</span> interfaces to provide the <span class="codefrag">map</span> and
|
|
|
+ <span class="codefrag">reduce</span> methods. These form the core of the job.</p>
|
|
|
+<a name="N105DD"></a><a name="Mapper"></a>
|
|
|
+<h4>Mapper</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/Mapper.html">
|
|
|
+ Mapper</a> maps input key/value pairs to a set of intermediate
|
|
|
+ key/value pairs.</p>
|
|
|
+<p>Maps are the individual tasks that transform input records into
|
|
|
+ intermediate records. The transformed intermediate records do not need
|
|
|
+ to be of the same type as the input records. A given input pair may
|
|
|
+ map to zero or many output pairs.</p>
|
|
|
+<p>The Hadoop Map-Reduce framework spawns one map task for each
|
|
|
+ <span class="codefrag">InputSplit</span> generated by the <span class="codefrag">InputFormat</span> for
|
|
|
+ the job.</p>
|
|
|
+<p>Overall, <span class="codefrag">Mapper</span> implementations are passed the
|
|
|
+ <span class="codefrag">JobConf</span> for the job via the
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConfigurable.html#configure(org.apache.hadoop.mapred.JobConf)">
|
|
|
+ JobConfigurable.configure(JobConf)</a> method and override it to
|
|
|
+ initialize themselves. The framework then calls
|
|
|
+ <a href="api/org/apache/hadoop/mapred/Mapper.html#map(K1, V1, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)">
|
|
|
+ map(WritableComparable, Writable, OutputCollector, Reporter)</a> for
|
|
|
+ each key/value pair in the <span class="codefrag">InputSplit</span> for that task.
|
|
|
+ Applications can then override the
|
|
|
+ <a href="api/org/apache/hadoop/io/Closeable.html#close()">
|
|
|
+ Closeable.close()</a> method to perform any required cleanup.</p>
|
|
|
+<p>Output pairs do not need to be of the same types as input pairs. A
|
|
|
+ given input pair may map to zero or many output pairs. Output pairs
|
|
|
+ are collected with calls to
|
|
|
+ <a href="api/org/apache/hadoop/mapred/OutputCollector.html#collect(K, V)">
|
|
|
+ OutputCollector.collect(WritableComparable,Writable)</a>.</p>
|
|
|
+<p>Applications can use the <span class="codefrag">Reporter</span> to report
|
|
|
+ progress, set application-level status messages and update
|
|
|
+ <span class="codefrag">Counters</span>, or just indicate that they are alive.</p>
|
|
|
+<p>All intermediate values associated with a given output key are
|
|
|
+ subsequently grouped by the framework, and passed to the
|
|
|
+ <span class="codefrag">Reducer</span>(s) to determine the final output. Users can
|
|
|
+ control the grouping by specifying a <span class="codefrag">Comparator</span> via
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConf.html#setOutputKeyComparatorClass(java.lang.Class)">
|
|
|
+ JobConf.setOutputKeyComparatorClass(Class)</a>.</p>
|
|
|
+<p>The <span class="codefrag">Mapper</span> outputs are sorted and then
|
|
|
+ partitioned per <span class="codefrag">Reducer</span>. The total number of partitions is
|
|
|
+ the same as the number of reduce tasks for the job. Users can control
|
|
|
+ which keys (and hence records) go to which <span class="codefrag">Reducer</span> by
|
|
|
+ implementing a custom <span class="codefrag">Partitioner</span>.</p>
|
|
|
+<p>Users can optionally specify a <span class="codefrag">combiner</span>, via
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConf.html#setCombinerClass(java.lang.Class)">
|
|
|
+ JobConf.setCombinerClass(Class)</a>, to perform local aggregation of
|
|
|
+ the intermediate outputs, which helps to cut down the amount of data
|
|
|
+ transferred from the <span class="codefrag">Mapper</span> to the <span class="codefrag">Reducer</span>.
|
|
|
+ </p>
|
|
|
+<p>The intermediate, sorted outputs are always stored in files of
|
|
|
+ <a href="api/org/apache/hadoop/io/SequenceFile.html">
|
|
|
+ SequenceFile</a> format. Applications can control if, and how, the
|
|
|
+ intermediate outputs are to be compressed and the
|
|
|
+ <a href="api/org/apache/hadoop/io/compress/CompressionCodec.html">
|
|
|
+ CompressionCodec</a> to be used via the <span class="codefrag">JobConf</span>.
|
|
|
+ </p>
|
|
|
+<a name="N10657"></a><a name="How+Many+Maps%3F"></a>
|
|
|
+<h5>How Many Maps?</h5>
|
|
|
+<p>The number of maps is usually driven by the total size of the
|
|
|
+ inputs, that is, the total number of blocks of the input files.</p>
|
|
|
+<p>The right level of parallelism for maps seems to be around 10-100
|
|
|
+ maps per-node, although it has been set up to 300 maps for very
|
|
|
+ cpu-light map tasks. Task setup takes awhile, so it is best if the
|
|
|
+ maps take at least a minute to execute.</p>
|
|
|
+<p>Thus, if you expect 10TB of input data and have a blocksize of
|
|
|
+ <span class="codefrag">128MB</span>, you'll end up with 82,000 maps, unless
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)">
|
|
|
+ setNumMapTasks(int)</a> (which only provides a hint to the framework)
|
|
|
+ is used to set it even higher.</p>
|
|
|
+<a name="N1066F"></a><a name="Reducer"></a>
|
|
|
+<h4>Reducer</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/Reducer.html">
|
|
|
+ Reducer</a> reduces a set of intermediate values which share a key to
|
|
|
+ a smaller set of values.</p>
|
|
|
+<p>The number of reduces for the job is set by the user
|
|
|
+ via <a href="api/org/apache/hadoop/mapred/JobConf.html#setNumReduceTasks(int)">
|
|
|
+ JobConf.setNumReduceTasks(int)</a>.</p>
|
|
|
+<p>Overall, <span class="codefrag">Reducer</span> implementations are passed the
|
|
|
+ <span class="codefrag">JobConf</span> for the job via the
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConfigurable.html#configure(org.apache.hadoop.mapred.JobConf)">
|
|
|
+ JobConfigurable.configure(JobConf)</a> method and can override it to
|
|
|
+ initialize themselves. The framework then calls
|
|
|
+ <a href="api/org/apache/hadoop/mapred/Reducer.html#reduce(K2, java.util.Iterator, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)">
|
|
|
+ reduce(WritableComparable, Iterator, OutputCollector, Reporter)</a>
|
|
|
+ method for each <span class="codefrag"><key, (list of values)></span>
|
|
|
+ pair in the grouped inputs. Applications can then override the
|
|
|
+ <a href="api/org/apache/hadoop/io/Closeable.html#close()">
|
|
|
+ Closeable.close()</a> method to perform any required cleanup.</p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">Reducer</span> has 3 primary phases: shuffle, sort and reduce.
|
|
|
+ </p>
|
|
|
+<a name="N1069F"></a><a name="Shuffle"></a>
|
|
|
+<h5>Shuffle</h5>
|
|
|
+<p>Input to the <span class="codefrag">Reducer</span> is the sorted output of the
|
|
|
+ mappers. In this phase the framework fetches the relevant partition
|
|
|
+ of the output of all the mappers, via HTTP.</p>
|
|
|
+<a name="N106AC"></a><a name="Sort"></a>
|
|
|
+<h5>Sort</h5>
|
|
|
+<p>The framework groups <span class="codefrag">Reducer</span> inputs by keys (since
|
|
|
+ different mappers may have output the same key) in this stage.</p>
|
|
|
+<p>The shuffle and sort phases occur simultaneously; while
|
|
|
+ map-outputs are being fetched they are merged.</p>
|
|
|
+<a name="N106BB"></a><a name="Secondary+Sort"></a>
|
|
|
+<h5>Secondary Sort</h5>
|
|
|
+<p>If equivalence rules for grouping the intermediate keys are
|
|
|
+ required to be different from those for grouping keys before
|
|
|
+ reduction, then one may specify a <span class="codefrag">Comparator</span> via
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConf.html#setOutputValueGroupingComparator(java.lang.Class)">
|
|
|
+ JobConf.setOutputValueGroupingComparator(Class)</a>. Since
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConf.html#setOutputKeyComparatorClass(java.lang.Class)">
|
|
|
+ JobConf.setOutputKeyComparatorClass(Class)</a> can be used to
|
|
|
+ control how intermediate keys are grouped, these can be used in
|
|
|
+ conjunction to simulate <em>secondary sort on values</em>.</p>
|
|
|
+<a name="N106D4"></a><a name="Reduce"></a>
|
|
|
+<h5>Reduce</h5>
|
|
|
+<p>In this phase the
|
|
|
+ <a href="api/org/apache/hadoop/mapred/Reducer.html#reduce(K2, java.util.Iterator, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)">
|
|
|
+ reduce(WritableComparable, Iterator, OutputCollector, Reporter)</a>
|
|
|
+ method is called for each <span class="codefrag"><key, (list of values)></span>
|
|
|
+ pair in the grouped inputs.</p>
|
|
|
+<p>The output of the reduce task is typically written to the
|
|
|
+ <a href="api/org/apache/hadoop/fs/FileSystem.html">
|
|
|
+ FileSystem</a> via
|
|
|
+ <a href="api/org/apache/hadoop/mapred/OutputCollector.html#collect(K, V)">
|
|
|
+ OutputCollector.collect(WritableComparable, Writable)</a>.</p>
|
|
|
+<p>Applications can use the <span class="codefrag">Reporter</span> to report
|
|
|
+ progress, set application-level status messages and update
|
|
|
+ <span class="codefrag">Counters</span>, or just indicate that they are alive.</p>
|
|
|
+<p>The output of the <span class="codefrag">Reducer</span> is <em>not sorted</em>.</p>
|
|
|
+<a name="N10702"></a><a name="How+Many+Reduces%3F"></a>
|
|
|
+<h5>How Many Reduces?</h5>
|
|
|
+<p>The right number of reduces seems to be <span class="codefrag">0.95</span> or
|
|
|
+ <span class="codefrag">1.75</span> multiplied by (<<em>no. of nodes</em>> *
|
|
|
+ <span class="codefrag">mapred.tasktracker.tasks.maximum</span>).</p>
|
|
|
+<p>With <span class="codefrag">0.95</span> all of the reduces can launch immediately
|
|
|
+ and start transfering map outputs as the maps finish. With
|
|
|
+ <span class="codefrag">1.75</span> the faster nodes will finish their first round of
|
|
|
+ reduces and launch a second wave of reduces doing a much better job
|
|
|
+ of load balancing.</p>
|
|
|
+<p>Increasing the number of reduces increases the framework overhead,
|
|
|
+ but increases load balancing and lowers the cost of failures.</p>
|
|
|
+<p>The scaling factors above are slightly less than whole numbers to
|
|
|
+ reserve a few reduce slots in the framework for speculative-tasks and
|
|
|
+ failed tasks.</p>
|
|
|
+<a name="N10727"></a><a name="Reducer+NONE"></a>
|
|
|
+<h5>Reducer NONE</h5>
|
|
|
+<p>It is legal to set the number of reduce-tasks to <em>zero</em> if
|
|
|
+ no reduction is desired.</p>
|
|
|
+<p>In this case the outputs of the map-tasks go directly to the
|
|
|
+ <span class="codefrag">FileSystem</span>, into the output path set by
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConf.html#setOutputPath(org.apache.hadoop.fs.Path)">
|
|
|
+ setOutputPath(Path)</a>. The framework does not sort the
|
|
|
+ map-outputs before writing them out to the <span class="codefrag">FileSystem</span>.
|
|
|
+ </p>
|
|
|
+<a name="N10742"></a><a name="Partitioner"></a>
|
|
|
+<h4>Partitioner</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/Partitioner.html">
|
|
|
+ Partitioner</a> partitions the key space.</p>
|
|
|
+<p>Partitioner controls the partitioning of the keys of the
|
|
|
+ intermediate map-outputs. The key (or a subset of the key) is used to
|
|
|
+ derive the partition, typically by a <em>hash function</em>. The total
|
|
|
+ number of partitions is the same as the number of reduce tasks for the
|
|
|
+ job. Hence this controls which of the <span class="codefrag">m</span> reduce tasks the
|
|
|
+ intermediate key (and hence the record) is sent to for reduction.</p>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/lib/HashPartitioner.html">
|
|
|
+ HashPartitioner</a> is the default <span class="codefrag">Partitioner</span>.</p>
|
|
|
+<a name="N10761"></a><a name="Reporter"></a>
|
|
|
+<h4>Reporter</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/Reporter.html">
|
|
|
+ Reporter</a> is a facility for Map-Reduce applications to report
|
|
|
+ progress, set application-level status messages and update
|
|
|
+ <span class="codefrag">Counters</span>.</p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">Mapper</span> and <span class="codefrag">Reducer</span> implementations can use
|
|
|
+ the <span class="codefrag">Reporter</span> to report progress or just indicate
|
|
|
+ that they are alive. In scenarios where the application takes a
|
|
|
+ significant amount of time to process individual key/value pairs,
|
|
|
+ this is crucial since the framework might assume that the task has
|
|
|
+ timed-out and kill that task. Another way to avoid this is to
|
|
|
+ set the configuration parameter <span class="codefrag">mapred.task.timeout</span> to a
|
|
|
+ high-enough value (or even set it to <em>zero</em> for no time-outs).
|
|
|
+ </p>
|
|
|
+<p>Applications can also update <span class="codefrag">Counters</span> using the
|
|
|
+ <span class="codefrag">Reporter</span>.</p>
|
|
|
+<a name="N1078B"></a><a name="OutputCollector"></a>
|
|
|
+<h4>OutputCollector</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/OutputCollector.html">
|
|
|
+ OutputCollector</a> is a generalization of the facility provided by
|
|
|
+ the Map-Reduce framework to collect data output by the
|
|
|
+ <span class="codefrag">Mapper</span> or the <span class="codefrag">Reducer</span> (either the
|
|
|
+ intermediate outputs or the output of the job).</p>
|
|
|
+<p>Hadoop Map-Reduce comes bundled with a
|
|
|
+ <a href="api/org/apache/hadoop/mapred/lib/package-summary.html">
|
|
|
+ library</a> of generally useful mappers, reducers, and partitioners.</p>
|
|
|
+<a name="N107A6"></a><a name="Job+Configuration"></a>
|
|
|
+<h3 class="h4">Job Configuration</h3>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/JobConf.html">
|
|
|
+ JobConf</a> represents a Map-Reduce job configuration.</p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">JobConf</span> is the primary interface for a user to describe
|
|
|
+ a map-reduce job to the Hadoop framework for execution. The framework
|
|
|
+ tries to faithfully execute the job as described by <span class="codefrag">JobConf</span>,
|
|
|
+ however:</p>
|
|
|
+<ul>
|
|
|
+
|
|
|
+<li>f
|
|
|
+ Some configuration parameters may have been marked as
|
|
|
+ <a href="api/org/apache/hadoop/conf/Configuration.html#FinalParams">
|
|
|
+ final</a> by administrators and hence cannot be altered.
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ While some job parameters are straight-forward to set (e.g.
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConf.html#setNumReduceTasks(int)">
|
|
|
+ setNumReduceTasks(int)</a>), other parameters interact subtly with
|
|
|
+ the rest of the framework and/or job configuration and are
|
|
|
+ more complex to set (e.g.
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)">
|
|
|
+ setNumMapTasks(int)</a>).
|
|
|
+ </li>
|
|
|
+
|
|
|
+</ul>
|
|
|
+<p>
|
|
|
+<span class="codefrag">JobConf</span> is typically used to specify the
|
|
|
+ <span class="codefrag">Mapper</span>, combiner (if any), <span class="codefrag">Partitioner</span>,
|
|
|
+ <span class="codefrag">Reducer</span>, <span class="codefrag">InputFormat</span> and
|
|
|
+ <span class="codefrag">OutputFormat</span> implementations. <span class="codefrag">JobConf</span> also
|
|
|
+ indicates the set of input files
|
|
|
+ (<a href="api/org/apache/hadoop/mapred/JobConf.html#setInputPath(org.apache.hadoop.fs.Path)">setInputPath(Path)</a>/<a href="api/org/apache/hadoop/mapred/JobConf.html#addInputPath(org.apache.hadoop.fs.Path)">addInputPath(Path)</a>)
|
|
|
+ and where the output files should be written
|
|
|
+ (<a href="api/org/apache/hadoop/mapred/JobConf.html#setOutputPath(org.apache.hadoop.fs.Path)">setOutputPath(Path)</a>).</p>
|
|
|
+<p>Optionally, <span class="codefrag">JobConf</span> is used to specify other advanced
|
|
|
+ facets of the job such as the <span class="codefrag">Comparator</span> to be used, files
|
|
|
+ to be put in the <span class="codefrag">DistributedCache</span>, whether intermediate
|
|
|
+ and/or job outputs are to be compressed (and how), debugging via
|
|
|
+ user-provided scripts
|
|
|
+ (<a href="api/org/apache/hadoop/mapred/JobConf.html#setMapDebugScript(java.lang.String)">setMapDebugScript(String)</a>/<a href="api/org/apache/hadoop/mapred/JobConf.html#setReduceDebugScript(java.lang.String)">setReduceDebugScript(String)</a>)
|
|
|
+ , whether job tasks can be executed in a <em>speculative</em> manner
|
|
|
+ (<a href="api/org/apache/hadoop/mapred/JobConf.html#setSpeculativeExecution(boolean)">setSpeculativeExecution(boolean)</a>)
|
|
|
+ , maximum number of attempts per task
|
|
|
+ (<a href="api/org/apache/hadoop/mapred/JobConf.html#setMaxMapAttempts(int)">setMaxMapAttempts(int)</a>/<a href="api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceAttempts(int)">setMaxReduceAttempts(int)</a>)
|
|
|
+ , percentage of tasks failure which can be tolerated by the job
|
|
|
+ (<a href="api/org/apache/hadoop/mapred/JobConf.html#setMaxMapTaskFailuresPercent(int)">setMaxMapTaskFailuresPercent(int)</a>/<a href="api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceTaskFailuresPercent(int)">setMaxReduceTaskFailuresPercent(int)</a>)
|
|
|
+ etc.</p>
|
|
|
+<p>Of course, users can use
|
|
|
+ <a href="api/org/apache/hadoop/conf/Configuration.html#set(java.lang.String, java.lang.String)">set(String, String)</a>/<a href="api/org/apache/hadoop/conf/Configuration.html#get(java.lang.String, java.lang.String)">get(String, String)</a>
|
|
|
+ to set/get arbitrary parameters needed by applications. However, use the
|
|
|
+ <span class="codefrag">DistributedCache</span> for large amounts of (read-only) data.</p>
|
|
|
+<a name="N1082C"></a><a name="Job+Submission+and+Monitoring"></a>
|
|
|
+<h3 class="h4">Job Submission and Monitoring</h3>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/JobClient.html">
|
|
|
+ JobClient</a> is the primary interface by which user-job interacts
|
|
|
+ with the <span class="codefrag">JobTracker</span>.</p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">JobClient</span> provides facilities to submit jobs, track their
|
|
|
+ progress, access component-tasks' reports/logs, get the Map-Reduce
|
|
|
+ cluster's status information and so on.</p>
|
|
|
+<p>The job submission process involves:</p>
|
|
|
+<ol>
|
|
|
+
|
|
|
+<li>Checking the input and output specifications of the job.</li>
|
|
|
+
|
|
|
+<li>Computing the <span class="codefrag">InputSplit</span> values for the job.</li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Setting up the requisite accounting information for the
|
|
|
+ <span class="codefrag">DistributedCache</span> of the job, if necessary.
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Copying the job's jar and configuration to the map-reduce system
|
|
|
+ directory on the <span class="codefrag">FileSystem</span>.
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Submitting the job to the <span class="codefrag">JobTracker</span> and optionally
|
|
|
+ monitoring it's status.
|
|
|
+ </li>
|
|
|
+
|
|
|
+</ol>
|
|
|
+<p>Normally the user creates the application, describes various facets
|
|
|
+ of the job via <span class="codefrag">JobConf</span>, and then uses the
|
|
|
+ <span class="codefrag">JobClient</span> to submit the job and monitor its progress.</p>
|
|
|
+<a name="N1086A"></a><a name="Job+Control"></a>
|
|
|
+<h4>Job Control</h4>
|
|
|
+<p>Users may need to chain map-reduce jobs to accomplish complex
|
|
|
+ tasks which cannot be done via a single map-reduce job. This is fairly
|
|
|
+ easy since the output of the job typically goes to distributed
|
|
|
+ file-system, and the output, in turn, can be used as the input for the
|
|
|
+ next job.</p>
|
|
|
+<p>However, this also means that the onus on ensuring jobs are
|
|
|
+ complete (success/failure) lies squarely on the clients. In such
|
|
|
+ cases, the various job-control options are:</p>
|
|
|
+<ul>
|
|
|
+
|
|
|
+<li>
|
|
|
+
|
|
|
+<a href="api/org/apache/hadoop/mapred/JobClient.html#runJob(org.apache.hadoop.mapred.JobConf)">
|
|
|
+ runJob(JobConf)</a> : Submits the job and returns only after the
|
|
|
+ job has completed.
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+
|
|
|
+<a href="api/org/apache/hadoop/mapred/JobClient.html#submitJob(org.apache.hadoop.mapred.JobConf)">
|
|
|
+ submitJob(JobConf)</a> : Only submits the job, then poll the
|
|
|
+ returned handle to the
|
|
|
+ <a href="api/org/apache/hadoop/mapred/RunningJob.html">
|
|
|
+ RunningJob</a> to query status and make scheduling decisions.
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+
|
|
|
+<a href="api/org/apache/hadoop/mapred/JobConf.html#setJobEndNotificationURI(java.lang.String)">
|
|
|
+ JobConf.setJobEndNotificationURI(String)</a> : Sets up a
|
|
|
+ notification upon job-completion, thus avoiding polling.
|
|
|
+ </li>
|
|
|
+
|
|
|
+</ul>
|
|
|
+<a name="N10894"></a><a name="Job+Input"></a>
|
|
|
+<h3 class="h4">Job Input</h3>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/InputFormat.html">
|
|
|
+ InputFormat</a> describes the input-specification for a Map-Reduce job.
|
|
|
+ </p>
|
|
|
+<p>The Map-Reduce framework relies on the <span class="codefrag">InputFormat</span> of
|
|
|
+ the job to:</p>
|
|
|
+<ol>
|
|
|
+
|
|
|
+<li>Validate the input-specification of the job.</li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Split-up the input file(s) into logical <span class="codefrag">InputSplit</span>
|
|
|
+ instances, each of which is then assigned to an individual
|
|
|
+ <span class="codefrag">Mapper</span>.
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Provide the <span class="codefrag">RecordReader</span> implementation used to
|
|
|
+ glean input records from the logical <span class="codefrag">InputSplit</span> for
|
|
|
+ processing by the <span class="codefrag">Mapper</span>.
|
|
|
+ </li>
|
|
|
+
|
|
|
+</ol>
|
|
|
+<p>The default behavior of file-based <span class="codefrag">InputFormat</span>
|
|
|
+ implementations, typically sub-classes of
|
|
|
+ <a href="api/org/apache/hadoop/mapred/FileInputFormat.html">
|
|
|
+ FileInputFormat</a>, is to split the input into <em>logical</em>
|
|
|
+ <span class="codefrag">InputSplit</span> instances based on the total size, in bytes, of
|
|
|
+ the input files. However, the <span class="codefrag">FileSystem</span> blocksize of the
|
|
|
+ input files is treated as an upper bound for input splits. A lower bound
|
|
|
+ on the split size can be set via <span class="codefrag">mapred.min.split.size</span>.</p>
|
|
|
+<p>Clearly, logical splits based on input-size is insufficient for many
|
|
|
+ applications since record boundaries must be respected. In such cases,
|
|
|
+ the application should implement a <span class="codefrag">RecordReader</span>, who is
|
|
|
+ responsible for respecting record-boundaries and presents a
|
|
|
+ record-oriented view of the logical <span class="codefrag">InputSplit</span> to the
|
|
|
+ individual task.</p>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/TextInputFormat.html">
|
|
|
+ TextInputFormat</a> is the default <span class="codefrag">InputFormat</span>.
|
|
|
+ </p>
|
|
|
+<a name="N108E9"></a><a name="InputSplit"></a>
|
|
|
+<h4>InputSplit</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/InputSplit.html">
|
|
|
+ InputSplit</a> represents the data to be processed by an individual
|
|
|
+ <span class="codefrag">Mapper</span>.</p>
|
|
|
+<p>Typically <span class="codefrag">InputSplit</span> presents a byte-oriented view of
|
|
|
+ the input, and it is the responsibility of <span class="codefrag">RecordReader</span>
|
|
|
+ to process and present a record-oriented view.</p>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/FileSplit.html">
|
|
|
+ FileSplit</a> is the default <span class="codefrag">InputSplit</span>. It sets
|
|
|
+ <span class="codefrag">map.input.file</span> to the path of the input file for the
|
|
|
+ logical split.</p>
|
|
|
+<a name="N1090E"></a><a name="RecordReader"></a>
|
|
|
+<h4>RecordReader</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/RecordReader.html">
|
|
|
+ RecordReader</a> reads <span class="codefrag"><key, value></span> pairs from an
|
|
|
+ <span class="codefrag">InputSplit</span>.</p>
|
|
|
+<p>Typically the <span class="codefrag">RecordReader</span> converts the byte-oriented
|
|
|
+ view of the input, provided by the <span class="codefrag">InputSplit</span>, and
|
|
|
+ presents a record-oriented to the <span class="codefrag">Mapper</span> implementations
|
|
|
+ for processing. <span class="codefrag">RecordReader</span> thus assumes the
|
|
|
+ responsibility of processing record boundaries and presents the tasks
|
|
|
+ with keys and values.</p>
|
|
|
+<a name="N10931"></a><a name="Job+Output"></a>
|
|
|
+<h3 class="h4">Job Output</h3>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/OutputFormat.html">
|
|
|
+ OutputFormat</a> describes the output-specification for a Map-Reduce
|
|
|
+ job.</p>
|
|
|
+<p>The Map-Reduce framework relies on the <span class="codefrag">OutputFormat</span> of
|
|
|
+ the job to:</p>
|
|
|
+<ol>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Validate the output-specification of the job; for example, check that
|
|
|
+ the output directory doesn't already exist.
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Provide the <span class="codefrag">RecordWriter</span> implementation used to
|
|
|
+ write the output files of the job. Output files are stored in a
|
|
|
+ <span class="codefrag">FileSystem</span>.
|
|
|
+ </li>
|
|
|
+
|
|
|
+</ol>
|
|
|
+<p>
|
|
|
+<span class="codefrag">TextOutputFormat</span> is the default
|
|
|
+ <span class="codefrag">OutputFormat</span>.</p>
|
|
|
+<a name="N1095A"></a><a name="Task+Side-Effect+Files"></a>
|
|
|
+<h4>Task Side-Effect Files</h4>
|
|
|
+<p>In some applications, component tasks need to create and/or write to
|
|
|
+ side-files, which differ from the actual job-output files.</p>
|
|
|
+<p>In such cases there could be issues with two instances of the same
|
|
|
+ <span class="codefrag">Mapper</span> or <span class="codefrag">Reducer</span> running simultaneously (for
|
|
|
+ example, speculative tasks) trying to open and/or write to the same
|
|
|
+ file (path) on the <span class="codefrag">FileSystem</span>. Hence the
|
|
|
+ application-writer will have to pick unique names per task-attempt
|
|
|
+ (using the taskid, say <span class="codefrag">task_200709221812_0001_m_000000_0</span>),
|
|
|
+ not just per task.</p>
|
|
|
+<p>To avoid these issues the Map-Reduce framework maintains a special
|
|
|
+ <span class="codefrag">${mapred.output.dir}/_${taskid}</span> sub-directory for each
|
|
|
+ task-attempt on the <span class="codefrag">FileSystem</span> where the output of the
|
|
|
+ task-attempt is stored. On successful completion of the task-attempt,
|
|
|
+ the files in the <span class="codefrag">${mapred.output.dir}/_${taskid}</span> (only)
|
|
|
+ are <em>promoted</em> to <span class="codefrag">${mapred.output.dir}</span>. Of course,
|
|
|
+ the framework discards the sub-directory of unsuccessful task-attempts.
|
|
|
+ This process is completely transparent to the application.</p>
|
|
|
+<p>The application-writer can take advantage of this feature by
|
|
|
+ creating any side-files required in <span class="codefrag">${mapred.output.dir}</span>
|
|
|
+ during execution of a task via
|
|
|
+ <a href="api/org/apache/hadoop/mapred/JobConf.html#getOutputPath()">
|
|
|
+ JobConf.getOutputPath()</a>, and the framework will promote them
|
|
|
+ similarly for succesful task-attempts, thus eliminating the need to
|
|
|
+ pick unique paths per task-attempt.</p>
|
|
|
+<a name="N1098F"></a><a name="RecordWriter"></a>
|
|
|
+<h4>RecordWriter</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/RecordWriter.html">
|
|
|
+ RecordWriter</a> writes the output <span class="codefrag"><key, value></span>
|
|
|
+ pairs to an output file.</p>
|
|
|
+<p>RecordWriter implementations write the job outputs to the
|
|
|
+ <span class="codefrag">FileSystem</span>.</p>
|
|
|
+<a name="N109A6"></a><a name="Other+Useful+Features"></a>
|
|
|
+<h3 class="h4">Other Useful Features</h3>
|
|
|
+<a name="N109AC"></a><a name="Counters"></a>
|
|
|
+<h4>Counters</h4>
|
|
|
+<p>
|
|
|
+<span class="codefrag">Counters</span> represent global counters, defined either by
|
|
|
+ the Map-Reduce framework or applications. Each <span class="codefrag">Counter</span> can
|
|
|
+ be of any <span class="codefrag">Enum</span> type. Counters of a particular
|
|
|
+ <span class="codefrag">Enum</span> are bunched into groups of type
|
|
|
+ <span class="codefrag">Counters.Group</span>.</p>
|
|
|
+<p>Applications can define arbitrary <span class="codefrag">Counters</span> (of type
|
|
|
+ <span class="codefrag">Enum</span>) and update them via
|
|
|
+ <a href="api/org/apache/hadoop/mapred/Reporter.html#incrCounter(java.lang.Enum, long)">
|
|
|
+ Reporter.incrCounter(Enum, long)</a> in the <span class="codefrag">map</span> and/or
|
|
|
+ <span class="codefrag">reduce</span> methods. These counters are then globally
|
|
|
+ aggregated by the framework.</p>
|
|
|
+<a name="N109D7"></a><a name="DistributedCache"></a>
|
|
|
+<h4>DistributedCache</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/filecache/DistributedCache.html">
|
|
|
+ DistributedCache</a> distributes application-specific, large, read-only
|
|
|
+ files efficiently.</p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">DistributedCache</span> is a facility provided by the
|
|
|
+ Map-Reduce framework to cache files (text, archives, jars and so on)
|
|
|
+ needed by applications.</p>
|
|
|
+<p>Applications specify the files to be cached via urls (hdfs:// or
|
|
|
+ http://) in the <span class="codefrag">JobConf</span>. The <span class="codefrag">DistributedCache</span>
|
|
|
+ assumes that the files specified via hdfs:// urls are already present
|
|
|
+ on the <span class="codefrag">FileSystem</span>.</p>
|
|
|
+<p>The framework will copy the necessary files to the slave node
|
|
|
+ before any tasks for the job are executed on that node. Its
|
|
|
+ efficiency stems from the fact that the files are only copied once
|
|
|
+ per job and the ability to cache archives which are un-archived on
|
|
|
+ the slaves.</p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">DistributedCache</span> can be used to distribute simple,
|
|
|
+ read-only data/text files and more complex types such as archives and
|
|
|
+ jars. Archives (zip files) are <em>un-archived</em> at the slave nodes.
|
|
|
+ Jars maybe be optionally added to the classpath of the tasks, a
|
|
|
+ rudimentary <em>software distribution</em> mechanism. Files have
|
|
|
+ <em>execution permissions</em> set. Optionally users can also direct the
|
|
|
+ <span class="codefrag">DistributedCache</span> to <em>symlink</em> the cached file(s)
|
|
|
+ into the working directory of the task.</p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">DistributedCache</span> tracks the modification timestamps of
|
|
|
+ the cached files. Clearly the cache files should not be modified by
|
|
|
+ the application or externally while the job is executing.</p>
|
|
|
+<a name="N10A11"></a><a name="Tool"></a>
|
|
|
+<h4>Tool</h4>
|
|
|
+<p>The <a href="api/org/apache/hadoop/util/Tool.html">Tool</a>
|
|
|
+ interface supports the handling of generic Hadoop command-line options.
|
|
|
+ </p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">Tool</span> is the standard for any Map-Reduce tool or
|
|
|
+ application. The application should delegate the handling of
|
|
|
+ standard command-line options to
|
|
|
+ <a href="api/org/apache/hadoop/util/GenericOptionsParser.html">
|
|
|
+ GenericOptionsParser</a> via
|
|
|
+ <a href="api/org/apache/hadoop/util/ToolRunner.html#run(org.apache.hadoop.util.Tool, java.lang.String[])">
|
|
|
+ ToolRunner.run(Tool, String[])</a> and only handle its custom
|
|
|
+ arguments.</p>
|
|
|
+<p>
|
|
|
+ The generic Hadoop command-line options are:<br>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ -conf <configuration file>
|
|
|
+ </span>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ -D <property=value>
|
|
|
+ </span>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ -fs <local|namenode:port>
|
|
|
+ </span>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ -jt <local|jobtracker:port>
|
|
|
+ </span>
|
|
|
+
|
|
|
+</p>
|
|
|
+<a name="N10A43"></a><a name="IsolationRunner"></a>
|
|
|
+<h4>IsolationRunner</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/IsolationRunner.html">
|
|
|
+ IsolationRunner</a> is a utility to help debug Map-Reduce programs.</p>
|
|
|
+<p>To use the <span class="codefrag">IsolationRunner</span>, first set
|
|
|
+ <span class="codefrag">keep.failed.tasks.files</span> to <span class="codefrag">true</span>
|
|
|
+ (also see <span class="codefrag">keep.tasks.files.pattern</span>).</p>
|
|
|
+<p>
|
|
|
+ Next, go to the node on which the failed task ran and go to the
|
|
|
+ <span class="codefrag">TaskTracker</span>'s local directory and run the
|
|
|
+ <span class="codefrag">IsolationRunner</span>:<br>
|
|
|
+
|
|
|
+<span class="codefrag">$ cd <local path>/taskTracker/${taskid}/work</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ $ bin/hadoop org.apache.hadoop.mapred.IsolationRunner ../job.xml
|
|
|
+ </span>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>
|
|
|
+<span class="codefrag">IsolationRunner</span> will run the failed task in a single
|
|
|
+ jvm, which can be in the debugger, over precisely the same input.</p>
|
|
|
+<a name="N10A76"></a><a name="JobControl"></a>
|
|
|
+<h4>JobControl</h4>
|
|
|
+<p>
|
|
|
+<a href="api/org/apache/hadoop/mapred/jobcontrol/package-summary.html">
|
|
|
+ JobControl</a> is a utility which encapsulates a set of Map-Reduce jobs
|
|
|
+ and their dependencies.</p>
|
|
|
+</div>
|
|
|
+
|
|
|
+
|
|
|
+<a name="N10A85"></a><a name="Example%3A+WordCount+v2.0"></a>
|
|
|
+<h2 class="h3">Example: WordCount v2.0</h2>
|
|
|
+<div class="section">
|
|
|
+<p>Here is a more complete <span class="codefrag">WordCount</span> which uses many of the
|
|
|
+ features provided by the Map-Reduce framework we discussed so far:</p>
|
|
|
+<a name="N10A91"></a><a name="Source+Code-N10A91"></a>
|
|
|
+<h3 class="h4">Source Code</h3>
|
|
|
+<table class="ForrestTable" cellspacing="1" cellpadding="4">
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<th colspan="1" rowspan="1"></th>
|
|
|
+ <th colspan="1" rowspan="1">WordCount.java</th>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">1.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">package org.myorg;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">2.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">3.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import java.io.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">4.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import java.util.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">5.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">6.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.fs.Path;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">7.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.filecache.DistributedCache;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">8.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.conf.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">9.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.io.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">10.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.mapred.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">11.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">import org.apache.hadoop.util.*;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">12.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">13.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">public class WordCount extends Configured implements Tool {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">14.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">15.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ public static class MapClass extends MapReduceBase
|
|
|
+ implements Mapper<LongWritable, Text, Text, IntWritable> {
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">16.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">17.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ static enum Counters { INPUT_WORDS }
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">18.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">19.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ private final static IntWritable one = new IntWritable(1);
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">20.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">private Text word = new Text();</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">21.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">22.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">private boolean caseSensitive = true;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">23.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">private Set<String> patternsToSkip = new HashSet<String>();</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">24.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">25.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">private long numRecords = 0;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">26.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">private String inputFile;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">27.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">28.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">public void configure(JobConf job) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">29.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ caseSensitive = job.getBoolean("wordcount.case.sensitive", true);
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">30.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">inputFile = job.get("map.input.file");</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">31.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">32.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">Path[] patternsFiles = new Path[0];</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">33.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">try {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">34.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ patternsFiles = DistributedCache.getLocalCacheFiles(job);
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">35.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">} catch (IOException ioe) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">36.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ System.err.println("Caught exception while getting cached files: "
|
|
|
+ + StringUtils.stringifyException(ioe));
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">37.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">38.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">for (Path patternsFile : patternsFiles) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">39.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">parseSkipFile(patternsFile);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">40.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">41.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">42.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">43.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">private void parseSkipFile(Path patternsFile) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">44.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">try {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">45.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ BufferedReader fis =
|
|
|
+ new BufferedReader(new FileReader(patternsFile.toString()));
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">46.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">String pattern = null;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">47.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">while ((pattern = fis.readLine()) != null) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">48.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">patternsToSkip.add(pattern);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">49.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">50.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">} catch (IOException ioe) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">51.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ System.err.println("Caught exception while parsing the cached file '" +
|
|
|
+ patternsFile + "' : " +
|
|
|
+ StringUtils.stringifyException(ioe));
|
|
|
+
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">52.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">53.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">54.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">55.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ public void map(LongWritable key, Text value,
|
|
|
+ OutputCollector<Text, IntWritable> output,
|
|
|
+ Reporter reporter) throws IOException {
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">56.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ String line =
|
|
|
+ (caseSensitive) ? value.toString() :
|
|
|
+ value.toString().toLowerCase();
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">57.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">58.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">for (String pattern : patternsToSkip) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">59.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">line = line.replaceAll(pattern, "");</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">60.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">61.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">62.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">StringTokenizer tokenizer = new StringTokenizer(line);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">63.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">while (tokenizer.hasMoreTokens()) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">64.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">word.set(tokenizer.nextToken());</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">65.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">output.collect(word, one);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">66.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">reporter.incrCounter(Counters.INPUT_WORDS, 1);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">67.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">68.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">69.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">if ((++numRecords % 100) == 0) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">70.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ reporter.setStatus("Finished processing " + numRecords +
|
|
|
+ " records " + "from the input file: " +
|
|
|
+ inputFile);
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">71.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">72.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">73.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">74.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">75.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ public static class Reduce extends MapReduceBase implements
|
|
|
+ Reducer<Text, IntWritable, Text, IntWritable> {
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">76.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ public void reduce(Text key, Iterator<IntWritable> values,
|
|
|
+ OutputCollector<Text, IntWritable> output,
|
|
|
+ Reporter reporter) throws IOException {
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">77.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">int sum = 0;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">78.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">while (values.hasNext()) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">79.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">sum += values.next().get();</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">80.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">81.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">output.collect(key, new IntWritable(sum));</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">82.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">83.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">84.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">85.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">public int run(String[] args) throws Exception {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">86.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ JobConf conf = new JobConf(getConf(), WordCount.class);
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">87.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setJobName("wordcount");</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">88.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">89.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setOutputKeyClass(Text.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">90.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setOutputValueClass(IntWritable.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">91.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">92.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setMapperClass(MapClass.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">93.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setCombinerClass(Reduce.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">94.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setReducerClass(Reduce.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">95.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">96.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setInputFormat(TextInputFormat.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">97.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setOutputFormat(TextOutputFormat.class);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">98.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">99.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ List<String> other_args = new ArrayList<String>();
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">100.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">for (int i=0; i < args.length; ++i) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">101.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">if ("-skip".equals(args[i]) {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">102.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ DistributedCache.addCacheFile(new Path(args[++i]).toUri(), conf);
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">103.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">} else {</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">104.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">other_args.add(args[i]);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">105.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">106.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">107.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">108.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setInputPath(new Path(other_args[0]));</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">109.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">conf.setOutputPath(new Path(other_args[1]));</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">110.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">111.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">JobClient.runJob(conf);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">112.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">return 0;</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">113.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">114.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">115.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ public static void main(String[] args) throws Exception {
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">116.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">
|
|
|
+ int res = ToolRunner.run(new Configuration(), new WordCount(),
|
|
|
+ args);
|
|
|
+ </span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">117.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">System.exit(res);</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">118.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">119.</td>
|
|
|
+ <td colspan="1" rowspan="1">
|
|
|
+ <span class="codefrag">}</span>
|
|
|
+ </td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+<tr>
|
|
|
+
|
|
|
+<td colspan="1" rowspan="1">120.</td>
|
|
|
+ <td colspan="1" rowspan="1"></td>
|
|
|
+
|
|
|
+</tr>
|
|
|
+
|
|
|
+</table>
|
|
|
+<a name="N111C3"></a><a name="Sample+Runs"></a>
|
|
|
+<h3 class="h4">Sample Runs</h3>
|
|
|
+<p>Sample text-files as input:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">$ bin/hadoop dfs -ls /usr/joe/wordcount/input/</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">/usr/joe/wordcount/input/file01</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">/usr/joe/wordcount/input/file02</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hello World, Bye World!</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hello Hadoop, Goodbye the Hadoop.</span>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>Run the application:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
|
|
|
+ /usr/joe/wordcount/input /usr/joe/wordcount/output
|
|
|
+ </span>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>Output:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
|
|
|
+ </span>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Bye 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Goodbye 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hadoop, 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hadoop. 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hello 2</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">World! 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">World, 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">the 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>Notice that the inputs differ from the first version we looked at,
|
|
|
+ and how they affect the outputs.</p>
|
|
|
+<p>Now, lets plug-in a pattern-file which lists the word-patterns to be
|
|
|
+ ignored, via the <span class="codefrag">DistributedCache</span>.</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">$ hadoop dfs -cat /user/joe/wordcount/patterns.txt</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">\.</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">\,</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">\!</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">the</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>Run it again, this time with more options:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
|
|
|
+ -Dwordcount.case.sensitive=true /usr/joe/wordcount/input
|
|
|
+ /usr/joe/wordcount/output -skip /user/joe/wordcount/patterns.txt
|
|
|
+ </span>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>As expected, the output:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
|
|
|
+ </span>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Bye 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Goodbye 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hadoop 2</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">Hello 2</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">World 2</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>Run it once more, this time switch-off case-sensitivity:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ $ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
|
|
|
+ -Dwordcount.case.sensitive=false /usr/joe/wordcount/input
|
|
|
+ /usr/joe/wordcount/output -skip /user/joe/wordcount/patterns.txt
|
|
|
+ </span>
|
|
|
+
|
|
|
+</p>
|
|
|
+<p>Sure enough, the output:</p>
|
|
|
+<p>
|
|
|
+
|
|
|
+<span class="codefrag">
|
|
|
+ $ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
|
|
|
+ </span>
|
|
|
+
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">bye 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">goodbye 1</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">hadoop 2</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">hello 2</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+<span class="codefrag">world 2</span>
|
|
|
+<br>
|
|
|
+
|
|
|
+</p>
|
|
|
+<a name="N11293"></a><a name="Salient+Points"></a>
|
|
|
+<h3 class="h4">Salient Points</h3>
|
|
|
+<p>The second version of <span class="codefrag">WordCount</span> improves upon the
|
|
|
+ previous one by using some features offered by the Map-Reduce framework:
|
|
|
+ </p>
|
|
|
+<ul>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Demonstrates how applications can access configuration parameters
|
|
|
+ in the <span class="codefrag">configure</span> method of the <span class="codefrag">Mapper</span> (and
|
|
|
+ <span class="codefrag">Reducer</span>) implementations (lines 28-41).
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Demonstrates how the <span class="codefrag">DistributedCache</span> can be used to
|
|
|
+ distribute read-only data needed by the jobs. Here it allows the user
|
|
|
+ to specify word-patterns to skip while counting (line 102).
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Demonstrates the utility of the <span class="codefrag">Tool</span> interface and the
|
|
|
+ <span class="codefrag">GenericOptionsParser</span> to handle generic Hadoop
|
|
|
+ command-line options (lines 85-86, 116).
|
|
|
+ </li>
|
|
|
+
|
|
|
+<li>
|
|
|
+ Demonstrates how applications can use <span class="codefrag">Counters</span> (line 66)
|
|
|
+ and how they can set application-specific status information via
|
|
|
+ the <span class="codefrag">Reporter</span> instance passed to the <span class="codefrag">map</span> (and
|
|
|
+ <span class="codefrag">reduce</span>) method (line 70).
|
|
|
+ </li>
|
|
|
+
|
|
|
+</ul>
|
|
|
+</div>
|
|
|
+
|
|
|
+
|
|
|
+<p>
|
|
|
+
|
|
|
+<em>Java and JNI are trademarks or registered trademarks of
|
|
|
+ Sun Microsystems, Inc. in the United States and other countries.</em>
|
|
|
+
|
|
|
+</p>
|
|
|
+
|
|
|
+
|
|
|
+</div>
|
|
|
+<!--+
|
|
|
+ |end content
|
|
|
+ +-->
|
|
|
+<div class="clearboth"> </div>
|
|
|
+</div>
|
|
|
+<div id="footer">
|
|
|
+<!--+
|
|
|
+ |start bottomstrip
|
|
|
+ +-->
|
|
|
+<div class="lastmodified">
|
|
|
+<script type="text/javascript"><!--
|
|
|
+document.write("Last Published: " + document.lastModified);
|
|
|
+// --></script>
|
|
|
+</div>
|
|
|
+<div class="copyright">
|
|
|
+ Copyright ©
|
|
|
+ 2007 <a href="http://www.apache.org/licenses/">The Apache Software Foundation.</a>
|
|
|
+</div>
|
|
|
+<!--+
|
|
|
+ |end bottomstrip
|
|
|
+ +-->
|
|
|
+</div>
|
|
|
+</body>
|
|
|
+</html>
|