|
@@ -17,6 +17,12 @@
|
|
|
*/
|
|
|
package org.apache.hadoop.metrics2.sink.timeline;
|
|
|
|
|
|
+import org.apache.commons.math3.analysis.interpolation.LinearInterpolator;
|
|
|
+import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
|
|
|
+import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction;
|
|
|
+
|
|
|
+import java.util.HashMap;
|
|
|
+import java.util.List;
|
|
|
import java.util.Map;
|
|
|
import java.util.TreeMap;
|
|
|
|
|
@@ -58,8 +64,6 @@ public class PostProcessingUtil {
|
|
|
|
|
|
public static Double interpolate(Long t, Long t1, Double m1,
|
|
|
Long t2, Double m2) {
|
|
|
-
|
|
|
-
|
|
|
//Linear Interpolation : y = y0 + (y1 - y0) * ((x - x0) / (x1 - x0))
|
|
|
if (m1 == null && m2 == null) {
|
|
|
return null;
|
|
@@ -78,4 +82,80 @@ public class PostProcessingUtil {
|
|
|
return m1 + slope * (t - t1);
|
|
|
}
|
|
|
|
|
|
+ public static Map<Long, Double> interpolate(Map<Long, Double> valuesMap, List<Long> requiredTimestamps) {
|
|
|
+
|
|
|
+ LinearInterpolator linearInterpolator = new LinearInterpolator();
|
|
|
+
|
|
|
+ if (valuesMap == null || valuesMap.isEmpty()) {
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+ if (requiredTimestamps == null || requiredTimestamps.isEmpty()) {
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+
|
|
|
+ Map<Long, Double> interpolatedValuesMap = new HashMap<>();
|
|
|
+
|
|
|
+ if (valuesMap.size() == 1) {
|
|
|
+ //Just one value present in the window. Use that value to interpolate all required timestamps.
|
|
|
+ Double value = null;
|
|
|
+ for (Map.Entry<Long, Double> entry : valuesMap.entrySet()) {
|
|
|
+ value = entry.getValue();
|
|
|
+ }
|
|
|
+ for (Long requiredTs : requiredTimestamps) {
|
|
|
+ interpolatedValuesMap.put(requiredTs, value);
|
|
|
+ }
|
|
|
+ return interpolatedValuesMap;
|
|
|
+ }
|
|
|
+
|
|
|
+ double[] timestamps = new double[valuesMap.size()];
|
|
|
+ double[] metrics = new double[valuesMap.size()];
|
|
|
+
|
|
|
+ int i = 0;
|
|
|
+ for (Map.Entry<Long, Double> entry : valuesMap.entrySet()) {
|
|
|
+ timestamps[i] = (double) entry.getKey();
|
|
|
+ metrics[i++] = entry.getValue();
|
|
|
+ }
|
|
|
+
|
|
|
+ PolynomialSplineFunction function = linearInterpolator.interpolate(timestamps, metrics);
|
|
|
+ PolynomialFunction[] splines = function.getPolynomials();
|
|
|
+ PolynomialFunction first = splines[0];
|
|
|
+
|
|
|
+ for (Long requiredTs : requiredTimestamps) {
|
|
|
+
|
|
|
+ Double interpolatedValue = null;
|
|
|
+ if (timestampInRange(requiredTs, timestamps[0], timestamps[timestamps.length - 1])) {
|
|
|
+ /*
|
|
|
+ Interpolation Case
|
|
|
+ Required TS is within range of the set of values used for interpolation.
|
|
|
+ Hence, we can use library to get the interpolated value.
|
|
|
+ */
|
|
|
+ interpolatedValue = function.value((double) requiredTs);
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ Extrapolation Case
|
|
|
+ Required TS outside range of the set of values used for interpolation.
|
|
|
+ We will use the coefficients to make best effort extrapolation
|
|
|
+ y(x)= y1 + m * (x−x1)
|
|
|
+ where, m = (y2−y1)/(x2−x1)
|
|
|
+ */
|
|
|
+ if (first.getCoefficients() != null && first.getCoefficients().length > 0) {
|
|
|
+ /*
|
|
|
+ y = c0 + c1x
|
|
|
+ where c0, c1 are coefficients
|
|
|
+ c1 will not be present if slope is zero.
|
|
|
+ */
|
|
|
+ Double y1 = first.getCoefficients()[0];
|
|
|
+ Double m = (first.getCoefficients().length > 1) ? first.getCoefficients()[1] : 0.0;
|
|
|
+ interpolatedValue = y1 + m * (requiredTs - timestamps[0]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ interpolatedValuesMap.put(requiredTs, interpolatedValue);
|
|
|
+ }
|
|
|
+ return interpolatedValuesMap;
|
|
|
+ }
|
|
|
+
|
|
|
+ private static boolean timestampInRange(Long timestamp, double left, double right) {
|
|
|
+ return (timestamp >= left && timestamp <= right);
|
|
|
+ }
|
|
|
+
|
|
|
}
|